Characterization and manipulation of the bacterial community in the midgut of Ixodes ricinus.

Melina Garcia Guizzo, Kristyna Dolezelikova, Saraswoti Neupane, Helena Frantova, Alena Hrbatova, Barbora Pafco, Jessica Fiorotti, Petr Kopacek, Ludek Zurek
Author Information
  1. Melina Garcia Guizzo: Central European Institute of Technology (CEITEC), Center for Infectious Diseases and Microbiology, University of Veterinary Sciences, Brno, Czech Republic.
  2. Kristyna Dolezelikova: Central European Institute of Technology (CEITEC), Center for Infectious Diseases and Microbiology, University of Veterinary Sciences, Brno, Czech Republic.
  3. Saraswoti Neupane: Department of Entomology, Kansas State University, Manhattan, KS, USA.
  4. Helena Frantova: Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
  5. Alena Hrbatova: Central European Institute of Technology (CEITEC), Center for Infectious Diseases and Microbiology, University of Veterinary Sciences, Brno, Czech Republic.
  6. Barbora Pafco: Central European Institute of Technology (CEITEC), Center for Infectious Diseases and Microbiology, University of Veterinary Sciences, Brno, Czech Republic.
  7. Jessica Fiorotti: Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
  8. Petr Kopacek: Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
  9. Ludek Zurek: Central European Institute of Technology (CEITEC), Center for Infectious Diseases and Microbiology, University of Veterinary Sciences, Brno, Czech Republic. ZUREKLU@vfu.cz.

Abstract

BACKGROUND: Ticks are obligate hematophagous arthropods transmitting a wide range of pathogens to humans and animals. They also harbor a non-pathogenic microbiota, primarily in the ovaries and the midgut. In the previous study on Ixodes ricinus, we used a culture-independent approach and showed a diverse but quantitatively poor midgut bacterial microbiome. Our analysis also revealed the absence of a core microbiome, suggesting an environmental origin of the tick midgut microbiota.
METHODS: A bacterial analysis of the midgut of adult females collected by flagging from two localities in the Czech Republic was performed. Using the culture-independent approach, we tested the hypothesis that the midgut microbiome is of the environmental origin. We also cultured indigenous bacteria from the tick midgut and used these to feed ticks artificially in an attempt to manipulate the midgut microbiome.
RESULTS: The midgut showed a very low prevalence and abundance of culturable bacteria, with only 37% of ticks positive for bacteria. The culture-independent approach revealed the presence of Borrelia sp., Spiroplasma sp., Rickettsia sp., Midichloria sp. and various mainly environmental Gram-positive bacterial taxa. The comparison of ticks from two regions revealed that the habitat influenced the midgut bacterial diversity. In addition, the midgut of ticks capillary fed with the indigenous Micrococcus luteus (Gram-positive) and Pantoea sp. (Gram-negative) could not be colonized due to rapid and effective clearance of both bacterial taxa.
CONCLUSIONS: The midgut microbiome of I. ricinus is diverse but low in abundance, with the exception of tick-borne pathogens and symbionts. The environment impacts the diversity of the tick midgut microbiome. Ingested extracellular environmental bacteria are rapidly eliminated and are not able to colonize the gut. We hypothesize that bacterial elimination triggered in the midgut of unfed adult females is critical to maintain low microbial levels during blood-feeding.

Keywords

References

  1. Exp Parasitol. 2002 Jan;100(1):17-27 [PMID: 11971650]
  2. Folia Parasitol (Praha). 2002;49(1):73-7 [PMID: 11993554]
  3. Exp Appl Acarol. 2014 May;63(1):107-22 [PMID: 24366635]
  4. Ticks Tick Borne Dis. 2016 Oct;7(6):1225-1229 [PMID: 27460902]
  5. Parasit Vectors. 2019 May 28;12(1):268 [PMID: 31138324]
  6. Exp Appl Acarol. 2002;28(1-4):127-34 [PMID: 14570122]
  7. Nat Methods. 2013 Jan;10(1):57-9 [PMID: 23202435]
  8. J Invertebr Pathol. 2006 Oct;93(2):96-104 [PMID: 16793056]
  9. FEMS Microbiol Rev. 2015 Nov;39(6):968-84 [PMID: 26109597]
  10. Trop Biomed. 2020 Sep 1;37(3):803-811 [PMID: 33612793]
  11. Trends Parasitol. 2021 Aug;37(8):722-733 [PMID: 33962878]
  12. Cell Host Microbe. 2014 Jan 15;15(1):58-71 [PMID: 24439898]
  13. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  14. Ann Agric Environ Med. 2004;11(2):319-22 [PMID: 15627343]
  15. PLoS Pathog. 2011 Mar;7(3):e1001320 [PMID: 21445237]
  16. Folia Microbiol (Praha). 2009 Sep;54(5):419-28 [PMID: 19937215]
  17. ISME J. 2016 Aug;10(8):1846-55 [PMID: 26882265]
  18. Front Biosci. 2008 May 01;13:6938-46 [PMID: 18508706]
  19. PLoS Negl Trop Dis. 2021 Jun 9;15(6):e0009480 [PMID: 34106924]
  20. Nat Rev Microbiol. 2020 Oct;18(10):587-600 [PMID: 32651470]
  21. Vector Borne Zoonotic Dis. 2001 Spring;1(1):45-53 [PMID: 12653135]
  22. Mol Ecol. 2016 Oct;25(19):4963-77 [PMID: 27588381]
  23. Bioinformatics. 2019 Feb 1;35(3):526-528 [PMID: 30016406]
  24. Parasit Vectors. 2018 Jan 4;11(1):12 [PMID: 29301588]
  25. Parasite Immunol. 2021 May;43(5):e12813 [PMID: 33314216]
  26. Am J Trop Med Hyg. 1996 Feb;54(2):214-8 [PMID: 8619451]
  27. Sci Rep. 2020 Feb 25;10(1):3352 [PMID: 32099004]
  28. PLoS Pathog. 2009 May;5(5):e1000423 [PMID: 19424427]
  29. Microb Ecol. 2019 May;77(4):1082-1090 [PMID: 30806729]
  30. Annu Rev Entomol. 2004;49:71-92 [PMID: 14651457]
  31. Microbiome. 2021 Jul 3;9(1):153 [PMID: 34217365]
  32. Parasit Vectors. 2015 Dec 10;8:632 [PMID: 26653035]
  33. Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E781-E790 [PMID: 28096373]
  34. Microorganisms. 2020 Aug 25;8(9): [PMID: 32854447]
  35. Front Cell Infect Microbiol. 2020 May 08;10:211 [PMID: 32457850]
  36. Microorganisms. 2020 Jun 30;8(7): [PMID: 32630152]
  37. PLoS One. 2020 Jul 1;15(7):e0234005 [PMID: 32609768]
  38. Ann Agric Environ Med. 2015;22(4):637-41 [PMID: 26706968]
  39. Parasit Vectors. 2022 Feb 8;15(1):48 [PMID: 35135613]
  40. Parasit Vectors. 2020 Jan 21;13(1):36 [PMID: 31964404]
  41. Parasit Vectors. 2021 Jan 28;14(1):83 [PMID: 33509255]
  42. BMC Microbiol. 2011 Jan 06;11(1):6 [PMID: 21211038]
  43. Int J Environ Res Public Health. 2021 Nov 19;18(22): [PMID: 34831890]
  44. Parasit Vectors. 2021 Jan 14;14(1):49 [PMID: 33446262]
  45. Acta Trop. 2010 Sep;115(3):275-81 [PMID: 20434424]
  46. Trends Parasitol. 2005 Dec;21(12):568-72 [PMID: 16226491]
  47. Exp Appl Acarol. 2020 Apr;80(4):543-558 [PMID: 32144639]
  48. J Appl Microbiol. 2018 Aug 21;: [PMID: 30129989]
  49. Ticks Tick Borne Dis. 2018 Feb;9(2):325-329 [PMID: 29239792]
  50. Ticks Tick Borne Dis. 2015 Jul;6(5):559-67 [PMID: 25976235]
  51. Front Cell Infect Microbiol. 2017 Jun 08;7:236 [PMID: 28642842]
  52. Parasitol Res. 2003 Mar;89(4):326-34 [PMID: 12632173]
  53. ISME J. 2018 Nov;12(11):2596-2607 [PMID: 29946195]
  54. Front Cell Infect Microbiol. 2020 Apr 08;10:142 [PMID: 32322563]

Grants

  1. GACR 19-04301S/Czech Science Foundation
  2. GACR 19-04301S/Czech Science Foundation
  3. GACR 19-04301S/Czech Science Foundation
  4. GACR 19-04301S/Czech Science Foundation
  5. GACR 19-04301S/Czech Science Foundation
  6. GACR 19-04301S/Czech Science Foundation
  7. CZ.02.1.01/0.0/0.0/16_019/0000759/European Regional Development Fund (ERDF) and Ministry of Education, Youth and Sport (MEYS).
  8. CZ.02.1.01/0.0/0.0/16_019/0000759/European Regional Development Fund (ERDF) and Ministry of Education, Youth and Sport (MEYS).
  9. CAPES 001/CAPES

MeSH Term

Animals
Borrelia
Czech Republic
Female
Ixodes
Microbiota
Rickettsia

Word Cloud

Created with Highcharts 10.0.0midgutbacterialmicrobiomespricinusenvironmentalbacteriaticksalsoIxodesculture-independentapproachrevealedticklowpathogensmicrobiotausedshoweddiverseanalysisoriginadultfemalestwoindigenousabundanceGram-positivetaxadiversitymanipulationMicrobiomeBACKGROUND:Ticksobligatehematophagousarthropodstransmittingwiderangehumansanimalsharbornon-pathogenicprimarilyovariespreviousstudyquantitativelypoorabsencecoresuggestingMETHODS:collectedflagginglocalitiesCzechRepublicperformedUsingtestedhypothesisculturedfeedartificiallyattemptmanipulateRESULTS:prevalenceculturable37%positivepresenceBorreliaSpiroplasmaRickettsiaMidichloriavariousmainlycomparisonregionshabitatinfluencedadditioncapillaryfedMicrococcusluteusPantoeaGram-negativecolonizedduerapideffectiveclearanceCONCLUSIONS:exceptiontick-bornesymbiontsenvironmentimpactsIngestedextracellularrapidlyeliminatedablecolonizeguthypothesizeeliminationtriggeredunfedcriticalmaintainmicrobiallevelsblood-feedingCharacterizationcommunityCapillaryfeedingCulturingHigh-throughputsequencingMidgut

Similar Articles

Cited By (13)