Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development.

Zhidong Hu, Shui-Hua Lu, Douglas B Lowrie, Xiao-Yong Fan
Author Information
  1. Zhidong Hu: Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China.
  2. Shui-Hua Lu: Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China.
  3. Douglas B Lowrie: National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China.
  4. Xiao-Yong Fan: Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China.

Abstract

Tuberculosis (TB), caused by respiratory infection with , remains a major global health threat. The only licensed TB vaccine, the one-hundred-year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an optimal TB vaccine is one of the key barriers to TB control. Recently, the development of highly efficacious COVID-19 vaccines within one year accelerated the vaccine development process in human use, with the notable example of mRNA vaccines and adenovirus-vectored vaccines, and increased the public acceptance of the concept of the controlled human challenge model. In the TB vaccine field, recent progress also facilitated the deployment of an effective TB vaccine. In this review, we provide an update on the current virus-vectored TB vaccine pipeline and summarize the latest findings that might facilitate TB vaccine development. In detail, on the one hand, we provide a systematic literature review of the virus-vectored TB vaccines are in clinical trials, and other promising candidate vaccines at an earlier stage of development are being evaluated in preclinical animal models. These research sharply increase the likelihood of finding a more effective TB vaccine in the near future. On the other hand, we provide an update on the latest tools and concept that facilitating TB vaccine research development. We propose that a pre-requisite for successful development may be a better understanding of both the lung-resident memory T cell-mediated mucosal immunity and the trained immunity of phagocytic cells. Such knowledge could reveal novel targets and result in the innovative vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We also summarized the research on controlled human infection and ultra-low-dose aerosol infection murine models, which may provide more realistic assessments of vaccine utility at earlier stages. In addition, we believe that the success in the ongoing efforts to identify correlates of protection would be a game-changer for streamlining the triage of multiple next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB vaccine research, we remain hopeful that a more effective TB vaccine will eventually be developed in the near future.

Keywords

References

  1. J Immunol. 2014 Aug 15;193(4):1799-811 [PMID: 25024382]
  2. Vaccine. 2012 Aug 17;30(38):5616-24 [PMID: 22789508]
  3. Respirology. 2018 May;23(5):455-466 [PMID: 29457312]
  4. Cell Rep. 2020 May 19;31(7):107634 [PMID: 32433977]
  5. Lancet. 2013 Mar 23;381(9871):1021-8 [PMID: 23391465]
  6. Hum Vaccin Immunother. 2017 Apr 3;13(4):816-822 [PMID: 27960596]
  7. Lancet Respir Med. 2015 Mar;3(3):190-200 [PMID: 25726088]
  8. NPJ Vaccines. 2020 Jan 3;5(1):2 [PMID: 31908851]
  9. Mucosal Immunol. 2018 Nov;11(6):1743-1752 [PMID: 30115996]
  10. Nat Rev Immunol. 2018 Sep;18(9):575-589 [PMID: 29895826]
  11. Lancet. 2015 May 2;385(9979):1799-1801 [PMID: 25814376]
  12. Cell. 2018 Nov 29;175(6):1634-1650.e17 [PMID: 30433869]
  13. Mucosal Immunol. 2017 Mar;10(2):555-564 [PMID: 27554293]
  14. Biomedicines. 2021 Nov 26;9(12): [PMID: 34944596]
  15. Infect Immun. 2005 Jun;73(6):3814-6 [PMID: 15908420]
  16. Front Immunol. 2021 May 03;12:652191 [PMID: 34012438]
  17. NPJ Vaccines. 2020 May 14;5(1):39 [PMID: 32435513]
  18. Vaccines (Basel). 2021 Apr 16;9(4): [PMID: 33923628]
  19. PLoS One. 2015 Nov 24;10(11):e0143552 [PMID: 26599077]
  20. MedComm (2020). 2022 Mar 06;3(1):e121 [PMID: 35281787]
  21. Lancet Infect Dis. 2014 Oct;14(10):939-46 [PMID: 25151225]
  22. Vaccine. 2020 Jan 22;38(4):779-789 [PMID: 31735500]
  23. Sci Transl Med. 2011 Aug 10;3(95):95ra73 [PMID: 21832238]
  24. Cell. 2020 Oct 29;183(3):752-770.e22 [PMID: 33125891]
  25. J Infect Dis. 2012 Apr 1;205(7):1035-42 [PMID: 22396610]
  26. Mucosal Immunol. 2013 May;6(3):612-25 [PMID: 23131783]
  27. J Virol. 2014 May;88(10):5356-68 [PMID: 24554667]
  28. Nat Rev Urol. 2021 Oct;18(10):611-622 [PMID: 34131332]
  29. J Immunol. 2005 Jun 15;174(12):7986-94 [PMID: 15944305]
  30. Front Microbiol. 2021 Oct 06;12:750124 [PMID: 34691001]
  31. Nat Rev Nephrol. 2022 Apr;18(4):209-223 [PMID: 35079143]
  32. J Immunol. 2017 Oct 1;199(7):2555-2569 [PMID: 28827285]
  33. Front Immunol. 2018 Aug 03;9:1796 [PMID: 30123219]
  34. Vaccine. 2013 Feb 4;31(7):1026-33 [PMID: 23266342]
  35. J Virol. 2012 May;86(9):5026-38 [PMID: 22419805]
  36. Mol Ther. 2008 Jun;16(6):1161-9 [PMID: 18388911]
  37. Nat Rev Immunol. 2016 Feb;16(2):79-89 [PMID: 26688350]
  38. Vaccine. 2008 Sep 19;26(40):5095-100 [PMID: 18514976]
  39. Nat Med. 2018 Feb;24(2):130-143 [PMID: 29334373]
  40. Int Immunol. 2018 Sep 25;30(10):471-481 [PMID: 30011025]
  41. Vaccine. 2014 Mar 26;32(15):1727-35 [PMID: 24486310]
  42. PLoS Pathog. 2017 Nov 27;13(11):e1006704 [PMID: 29176787]
  43. Infect Immun. 2018 Jun 21;86(7): [PMID: 29661928]
  44. Health Technol Assess. 2017 Jul;21(39):1-54 [PMID: 28738015]
  45. Semin Immunol. 2020 Aug;50:101430 [PMID: 33262065]
  46. Dev Biol Stand. 1995;84:159-63 [PMID: 7796949]
  47. Immunology. 2004 Jul;112(3):461-70 [PMID: 15196215]
  48. Virology. 1992 May;188(1):217-32 [PMID: 1566575]
  49. Mucosal Immunol. 2015 Nov;8(6):1373-87 [PMID: 25872483]
  50. J Immunol. 2014 Apr 1;192(7):2965-9 [PMID: 24591367]
  51. Infect Immun. 2006 Aug;74(8):4634-43 [PMID: 16861651]
  52. PLoS Med. 2019 Apr 30;16(4):e1002790 [PMID: 31039172]
  53. Lancet Infect Dis. 2021 Jul;21(7):993-1003 [PMID: 33609457]
  54. Infect Immun. 2007 Aug;75(8):4105-15 [PMID: 17526747]
  55. Sci Rep. 2017 Dec 11;7(1):17286 [PMID: 29230061]
  56. Vaccine. 2014 Oct 14;32(45):5908-17 [PMID: 25218194]
  57. Tuberculosis (Edinb). 2016 Jan;96:37-43 [PMID: 26786653]
  58. Hum Vaccin Immunother. 2014;10(8):2235-44 [PMID: 25424927]
  59. Infect Immun. 2009 Aug;77(8):3364-73 [PMID: 19487476]
  60. J Infect Dis. 2020 Mar 16;221(7):1127-1134 [PMID: 31689350]
  61. J Immunol. 2003 Aug 1;171(3):1602-9 [PMID: 12874255]
  62. Mol Ther. 2017 May 3;25(5):1222-1233 [PMID: 28342639]
  63. Microorganisms. 2020 May 08;8(5): [PMID: 32397070]
  64. J Immunol. 2007 Feb 15;178(4):2387-95 [PMID: 17277145]
  65. Proc R Soc Med. 1931 Sep;24(11):1481-90 [PMID: 19988326]
  66. Nature. 2020 Jan;577(7788):95-102 [PMID: 31894150]
  67. Open Forum Infect Dis. 2021 Oct 23;8(11):ofab539 [PMID: 35198641]
  68. Clin Vaccine Immunol. 2012 Sep;19(9):1339-47 [PMID: 22761299]
  69. Clin Infect Dis. 2018 Feb 1;66(4):554-563 [PMID: 29028973]
  70. Eur J Immunol. 2010 Sep;40(9):2482-92 [PMID: 20602436]
  71. Front Cell Infect Microbiol. 2017 Feb 07;7:34 [PMID: 28224119]
  72. Immunology. 2014 Oct;143(2):277-86 [PMID: 24773322]
  73. Vaccine. 2021 Mar 1;39(9):1452-1462 [PMID: 33549390]
  74. Vaccine. 2015 Dec 16;33(51):7217-7224 [PMID: 26552000]
  75. Lancet. 2006 Apr 8;367(9517):1173-80 [PMID: 16616560]
  76. J Biol Chem. 2002 Jun 14;277(24):21453-7 [PMID: 11967257]
  77. JCI Insight. 2022 Feb 8;7(3): [PMID: 34990408]
  78. Front Immunol. 2014 Apr 22;5:180 [PMID: 24795723]
  79. Curr Opin HIV AIDS. 2019 Mar;14(2):137-142 [PMID: 30562176]
  80. P T. 2017 Oct;42(10):638-640 [PMID: 29018300]
  81. J Clin Invest. 2015 Mar 2;125(3):1129-46 [PMID: 25642773]
  82. Clin Infect Dis. 2014 Feb;58(4):470-80 [PMID: 24336911]
  83. J Infect Dis. 2019 Sep 13;220(8):1355-1366 [PMID: 31198944]
  84. PLoS One. 2015 Nov 03;10(11):e0141687 [PMID: 26529238]
  85. Nat Rev Immunol. 2020 Jun;20(6):375-388 [PMID: 32132681]
  86. Infect Immun. 2002 Mar;70(3):1623-6 [PMID: 11854254]
  87. Cell Host Microbe. 2021 Jan 13;29(1):68-82.e5 [PMID: 33142108]
  88. Viruses. 2020 Sep 11;12(9): [PMID: 32933033]
  89. J Immunol. 2014 Sep 1;193(5):2306-16 [PMID: 25070842]
  90. N Engl J Med. 2019 Dec 19;381(25):2429-2439 [PMID: 31661198]
  91. Infect Immun. 2001 Feb;69(2):681-6 [PMID: 11159955]
  92. Lancet Infect Dis. 2016 Feb;16(2):219-26 [PMID: 26603173]
  93. Vaccine. 1994 Aug;12(11):1032-40 [PMID: 7975844]
  94. Clin Vaccine Immunol. 2006 Aug;13(8):898-904 [PMID: 16893990]
  95. Eur J Immunol. 2010 Jan;40(1):279-90 [PMID: 20017188]
  96. Hum Vaccin Immunother. 2014;10(8):2199-210 [PMID: 25424923]
  97. N Engl J Med. 2018 Jul 12;379(2):138-149 [PMID: 29996082]
  98. Nat Med. 2019 Feb;25(2):255-262 [PMID: 30664782]
  99. Cell Host Microbe. 2011 May 19;9(5):355-61 [PMID: 21575907]
  100. Sci Rep. 2018 Oct 17;8(1):15309 [PMID: 30333506]
  101. Tuberculosis (Edinb). 2014 Mar;94(2):105-10 [PMID: 24369986]
  102. J Infect Dis. 2018 Apr 11;217(9):1491-1503 [PMID: 29373700]
  103. J Am Acad Dermatol. 2001 Jan;44(1):1-16 [PMID: 11148468]
  104. Health Technol Assess. 2013 Sep;17(37):1-372, v-vi [PMID: 24021245]
  105. Vaccine. 2016 Mar 8;34(11):1412-21 [PMID: 26854906]
  106. PLoS One. 2008;3(11):e3790 [PMID: 19023426]
  107. PLoS Pathog. 2016 May 31;12(5):e1005667 [PMID: 27244558]
  108. Curr Opin Immunol. 2011 Jun;23(3):377-82 [PMID: 21514130]
  109. PLoS One. 2009;4(4):e5264 [PMID: 19367339]
  110. J Exp Med. 2008 Jan 21;205(1):7-12 [PMID: 18195078]
  111. Curr Opin HIV AIDS. 2010 Sep;5(5):391-6 [PMID: 20978379]
  112. PLoS One. 2009 Jun 10;4(6):e5856 [PMID: 19516906]
  113. Am J Respir Crit Care Med. 2010 Jun 15;181(12):1407-17 [PMID: 20167847]
  114. Front Immunol. 2021 Jun 11;12:673532 [PMID: 34177914]
  115. Infect Immun. 2009 Feb;77(2):622-31 [PMID: 19064635]
  116. mBio. 2016 Nov 22;7(6): [PMID: 27879332]
  117. Front Microbiol. 2020 Aug 07;11:1901 [PMID: 32849474]
  118. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17537-42 [PMID: 22988082]
  119. J Mol Med (Berl). 2019 Dec;97(12):1685-1694 [PMID: 31786669]
  120. Hum Vaccin Immunother. 2013 Jan;9(1):50-62 [PMID: 23143773]
  121. Sci Transl Med. 2013 Oct 2;5(205):205ra134 [PMID: 24089406]
  122. J Infect Dis. 2014 Apr 15;209(8):1259-68 [PMID: 24273174]
  123. Cell Rep Med. 2021 Jan 19;2(1):100185 [PMID: 33521699]
  124. Expert Rev Vaccines. 2012 Oct;11(10):1221-33 [PMID: 23176655]
  125. J Immunol. 2004 Nov 15;173(10):6357-65 [PMID: 15528375]
  126. Sci Rep. 2017 Sep 26;7(1):12305 [PMID: 28951586]
  127. Ann N Y Acad Sci. 1990;590:309-25 [PMID: 2198832]
  128. PLoS One. 2015 Aug 07;10(8):e0135009 [PMID: 26252520]
  129. Vaccine. 2015 Apr 8;33(15):1890-6 [PMID: 25698492]
  130. Vaccines (Basel). 2014 Jul 29;2(3):624-41 [PMID: 26344749]
  131. Cell Host Microbe. 2017 Mar 8;21(3):297-300 [PMID: 28279335]
  132. Semin Immunol. 2020 Aug;50:101431 [PMID: 33279383]
  133. Lancet Infect Dis. 2006 Aug;6(8):522-8 [PMID: 16870530]
  134. J Exp Med. 2015 Aug 24;212(9):1449-63 [PMID: 26282876]
  135. J Immunol. 2020 Nov 15;205(10):2750-2762 [PMID: 32998983]
  136. J Immunol. 2013 Mar 15;190(6):2720-35 [PMID: 23390298]
  137. Immunology. 2015 Oct;146(2):264-70 [PMID: 26095282]
  138. Nat Med. 2004 Nov;10(11):1240-4 [PMID: 15502839]
  139. Vaccine. 2022 Jan 21;40(2):173-174 [PMID: 34922788]
  140. Cell. 2020 Oct 15;183(2):315-323.e9 [PMID: 32941801]
  141. Curr Opin Virol. 2016 Dec;21:1-8 [PMID: 27327517]
  142. Am J Respir Crit Care Med. 2017 May 1;195(9):1171-1180 [PMID: 28060545]
  143. Mucosal Immunol. 2022 Mar;15(3):389-397 [PMID: 34743182]
  144. Nat Med. 2019 Jun;25(6):977-987 [PMID: 31110348]
  145. Vaccine. 2016 May 5;34(21):2430-2436 [PMID: 27026148]
  146. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11341-8 [PMID: 8876137]
  147. Scand J Immunol. 2022 Jan;95(1):e13120 [PMID: 34796982]
  148. PLoS Pathog. 2009 Apr;5(4):e1000392 [PMID: 19381260]
  149. Nat Med. 2015 Jul;21(7):688-97 [PMID: 26121195]
  150. Tuberculosis (Edinb). 2006 May-Jul;86(3-4):236-46 [PMID: 16677861]
  151. Mol Immunol. 2016 Jul;75:101-11 [PMID: 27267270]
  152. Vaccine. 2015 Nov 27;33(48):6800-8 [PMID: 26478198]
  153. Acta Biochim Biophys Sin (Shanghai). 2015 Aug;47(8):588-96 [PMID: 26112017]
  154. Cell. 2022 Mar 3;185(5):896-915.e19 [PMID: 35180381]
  155. Br Med J. 1896 Jan 4;1(1827):7-10 [PMID: 20755942]
  156. Vaccine. 2012 Mar 9;30(12):2098-108 [PMID: 22296955]

MeSH Term

Animals
COVID-19
COVID-19 Vaccines
Humans
Mice
Tuberculosis
Tuberculosis Vaccines
Vaccine Development

Chemicals

COVID-19 Vaccines
Tuberculosis Vaccines

Word Cloud

Created with Highcharts 10.0.0vaccineTBdevelopmentvaccinesprovideresearchimmunityTuberculosisinfectiononehumaneffectivemayefficacyprotectionThusconceptcontrolledalsoreviewupdatevirus-vectoredlatesthandearliermodelsnearfuturemucosaltrainedknowledgecausedrespiratoryremainsmajorglobalhealththreatlicensedone-hundred-year-oldBacilleCalmette-GuérinvariableoftenprovidespooradultpulmonarytransmissibleformdiseaselackoptimalkeybarrierscontrolRecentlyhighlyefficaciousCOVID-19withinyearacceleratedprocessusenotableexamplemRNAadenovirus-vectoredincreasedpublicacceptancechallengemodelfieldrecentprogressfacilitateddeploymentcurrentpipelinesummarizefindingsmightfacilitatedetailsystematicliteratureclinicaltrialspromisingcandidatestageevaluatedpreclinicalanimalsharplyincreaselikelihoodfindingtoolsfacilitatingproposepre-requisitesuccessfulbetterunderstandinglung-residentmemoryTcell-mediatedphagocyticcellsrevealnoveltargetsresultinnovativedesignsneededquantumleapforwardsummarizedultra-low-doseaerosolmurinerealisticassessmentsutilitystagesadditionbelievesuccessongoingeffortsidentifycorrelatesgame-changerstreamliningtriagemultiplenext-generationcandidatesadvancedremainhopefulwilleventuallydevelopedResearchAdvancesVirus-vectoredVaccinesLatestFindingsVaccineDevelopmenttuberculosisviralvector

Similar Articles

Cited By (18)