Pingping Qian, Wen Song, Miki Zaizen-Iida, Sawa Kume, Guodong Wang, Ye Zhang, Kaori Kinoshita-Tsujimura, Jijie Chai, Tatsuo Kakimoto
Author Information
Pingping Qian: Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan. qianpp2013@bio.sci.osaka-u.ac.jp.
Wen Song: Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China. ORCID
Miki Zaizen-Iida: Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
Sawa Kume: Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
Guodong Wang: Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
Ye Zhang: Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan. ORCID
Kaori Kinoshita-Tsujimura: Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
Jijie Chai: Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
Tatsuo Kakimoto: Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan. kakimoto@bio.sci.osaka-u.ac.jp. ORCID
The phloem consists of sieve elements (SEs) and companion cells (CCs). Here we show that Dof-class transcription factors preferentially expressed in the phloem (phloem-Dofs) are not only necessary and sufficient for SE and CC differentiation, but also induce negative regulators of phloem development, CLAVATA3/EMBRYO SURROUNDING REGION-RELATED25 (CLE25), CLE26 and CLE45 secretory peptides. CLEs were perceived by BARELY ANY MERISTEM (BAM)-class receptors and CLAVATA3 INSENSITIVE RECEPTOR KINASE (CIK) co-receptors, and post-transcriptionally decreased phloem-Dof proteins and repressed SE and CC formation. Multiple mutations in CLE-, BAM- or CIK-class genes caused ectopic formation of SEs and CCs, producing an SE/CC cluster at each phloem region. We propose that while phloem-Dofs induce phloem cell formation, they inhibit excess phloem cell formation by inducing CLEs. Normal-positioned SE and CC precursor cells appear to overcome the effect of CLEs by reinforcing the production of phloem-Dofs through a positive feedback transcriptional regulation.
References
Heo, J.-O., Roszak, P., Furuta, K. M. & Helariutta, Y. Phloem development: current knowledge and future perspectives. Am. J. Bot. 101, 1393–1402 (2014).
[PMID: 25253700]
Anne, P. & Hardtke, C. S. Phloem function and development-biophysics meets genetics. Curr. Opin. Plant Biol. 43, 22–28 (2018).
[PMID: 29278791]
López-Salmerón, V., Cho, H., Tonn, N. & Greb, T. The phloem as a mediator of plant growth plasticity. Curr. Biol. 29, R173–R181 (2019).
[PMID: 30836090]
Fukuda, H. & Ohashi-Ito, K. Vascular tissue development in plants. Curr. Top. Dev. Biol. 131, 141–160 (2019).
[PMID: 30612615]
Rodriguez-Villalon, A. Wiring a plant: genetic networks for phloem formation in Arabidopsis thaliana roots. New Phytol. 210, 45–50 (2016).
[PMID: 26171671]
Ruonala, R., Ko, D. & Helariutta, Y. Genetic networks in plant vascular development. Annu. Rev. Genet. 51, 335–359 (2017).
[PMID: 28892639]
Miyashima, S. et al. Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature 565, 490–494 (2019).
[PMID: 30626969]
Roszak, P. et al. Cell-by-cell dissection of phloem development links a maturation gradient to cell specialization. Science 374, eaba5531 (2021).
[PMID: 34941412]
Wallner, E.-S. et al. Strigolactone- and karrikin-independent SMXL proteins are central regulators of phloem formation. Curr. Biol. 27, 1241–1247 (2017).
[PMID: 28392107]
Furuta, K. M. et al. Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science 345, 933–937 (2014).
[PMID: 25081480]
Ren, S.-C. et al. CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex. J. Integr. Plant Biol. 61, 1043–1061 (2019).
[PMID: 31127689]
Anne, P. et al. CLERK is a novel receptor kinase required for sensing of root-active CLE peptides in Arabidopsis. Development 145, dev162354 (2018).
[PMID: 29789310]
Depuydt, S. et al. Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3. Proc. Natl Acad. Sci. USA 110, 7074–7079 (2013).
[PMID: 23569225]
Rodriguez-Villalon, A. et al. Molecular genetic framework for protophloem formation. Proc. Natl Acad. Sci. USA 111, 11551–11556 (2014).
[PMID: 25049386]
Rodriguez-Villalon, A., Gujas, B., van Wijk, R., Munnik, T. & Hardtke, C. S. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching. Development 142, 1437–1446 (2015).
[PMID: 25813544]
Graeff, M. & Hardtke, C. S. Metaphloem development in the Arabidopsis root tip. Development 148, 6 (2021).
[DOI: 10.1242/dev.199766]
Hu, C. et al. A CLE–BAM–CIK signaling module controls root protophloem differentiation in Arabidopsis. New Phytol. https://doi.org/10.1111/nph.17791 (2021).
Gujas, B. et al. A reservoir of pluripotent phloem cells safeguards the linear developmental trajectory of protophloem sieve elements. Curr. Biol. 30, 755–766.e4 (2020).
[PMID: 32037095]
Hazak, O. et al. Perception of root‐active CLE peptides requires CORYNE function in the phloem vasculature. EMBO Rep. 18, 1367–1381 (2017).
[PMID: 28607033]
Scacchi, E. et al. Spatio-temporal sequence of cross-regulatory events in root meristem growth. Proc. Natl Acad. Sci. USA 107, 22734–22739 (2010).
[PMID: 21149702]
Truernit, E., Bauby, H., Belcram, K., Barthélémy, J. & Palauqui, J.-C. OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana. Development 139, 1306–1315 (2012).
[PMID: 22395740]
Breda, A. S. et al. A cellular insulator against CLE45 peptide signaling. Curr. Biol. 29, 2501–2508.e3 (2019).
[PMID: 31327718]
Anne, P. et al. OCTOPUS negatively regulates BIN2 to control phloem differentiation in Arabidopsis thaliana. Curr. Biol. 25, 2584–2590 (2015).
[PMID: 26387715]
Lee, J.-Y. et al. Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc. Natl Acad. Sci. USA 103, 6055–6060 (2006).
[PMID: 16581911]
Yanagisawa, S. The Dof family of plant transcription factors. Trends Plant Sci. 7, 555–560 (2002).
[PMID: 12475498]
Zuo, J., Niu, Q.-W. & Chua, N.-H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265–273 (2000).
[PMID: 11069700]
Hiratsu, K., Matsui, K., Koyama, T. & Ohme-Takagi, M. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 34, 733–739 (2003).
[PMID: 12787253]
Khan, J. A., Wang, Q., Sjölund, R. D., Schulz, A. & Thompson, G. A. An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis. Plant Physiol. 143, 1576–1589 (2007).
[PMID: 17293437]
Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).
[PMID: 23524392]
Bonke, M., Thitamadee, S., Mähönen, A. P., Hauser, M.-T. & Helariutta, Y. APL regulates vascular tissue identity in Arabidopsis. Nature 426, 181–186 (2003).
[PMID: 14614507]
Ito, Y. et al. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313, 842–845 (2006).
[PMID: 16902140]
Hirakawa, Y. et al. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc. Natl Acad. Sci. USA 105, 15208–15213 (2008).
[PMID: 18812507]
Stadler, R. et al. Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J. 41, 319–331 (2005).
[PMID: 15634207]
De Rybel, B. et al. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev. Cell 24, 426–437 (2013).
[PMID: 23415953]
Qian, P. et al. The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors. Nat. Plants 4, 1071–1081 (2018).
[PMID: 30518839]
Kubo, M. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19, 1855–1860 (2005).
[PMID: 16103214]
Schuetz, M. et al. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol. 166, 798–807 (2014).
[PMID: 25157028]
O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280–1292 (2016).
[PMID: 27203113]
Ohyama, K., Shinohara, H., Ogawa-Ohnishi, M. & Matsubayashi, Y. A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat. Chem. Biol. 5, 578–580 (2009).
[PMID: 19525968]
Shiu, S.-H. & Bleecker, A. B. Expansion of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 132, 530–543 (2003).
[PMID: 12805585]
Corcilius, L. et al. Arabinosylation modulates the growth-regulating activity of the peptide hormone CLE40a from soybean. Cell Chem. Biol. 24, 1347–1355.e7 (2017).
[PMID: 28943356]
Gou, X. & Li, J. Paired receptor and coreceptor kinases perceive extracellular signals to control plant development. Plant Physiol. 182, 1667–1681 (2020).
[PMID: 32144125]
Hu, C. et al. A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nat. Plants 4, 205–211 (2018).
[PMID: 29581511]
Hohmann, U., Lau, K. & Hothorn, M. The structural basis of ligand perception and signal activation by receptor kinases. Annu. Rev. Plant Biol. 68, 109–137 (2017).
[PMID: 28125280]
Bajar, B. T. et al. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Sci. Rep. 6, 20889 (2016).
[PMID: 26879144]
De Smet, I. et al. Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322, 594–597 (2008).
[PMID: 18948541]
Dinneny, J. R. et al. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320, 942–945 (2008).
[PMID: 18436742]
Dalrymple, M. A., McGeoch, D. J., Davison, A. J. & Preston, C. DNA sequence of the herpes simplex virus type 1 gene whose product is responsible for transcriptional activation of immediate early promoters. Nucleic Acids Res. 13, 7865–7879 (1985).
[PMID: 2999707]
Kurihara, D., Mizuta, Y., Sato, Y. & Higashiyama, T. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142, 4168–4179 (2015).
[PMID: 26493404]
Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods https://doi.org/10.1038/nmeth.2019 (2012).
Paciorek, T., Sauer, M., Balla, J., Wiśniewska, J. & Friml, J. Immunocytochemical technique for protein localization in sections of plant tissues. Nat. Protoc. 1, 104–107 (2006).
[PMID: 17406219]
Wang, Z.-P. et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16, 144 (2015).
[PMID: 26193878]