In capillary labeling and online electrophoretic separation of N-glycans from glycoproteins.

Bin Yang, Thanh Duc Mai, Nguyet Thuy Tran, Myriam Taverna
Author Information
  1. Bin Yang: Université Paris-Saclay, CNRS, Faculté de Pharmacie, Institut Galien Paris-Saclay, Bâtiment Henri Moissan, 17 Avenue des Sciences, Orsay, 91400, France.
  2. Thanh Duc Mai: Université Paris-Saclay, CNRS, Faculté de Pharmacie, Institut Galien Paris-Saclay, Bâtiment Henri Moissan, 17 Avenue des Sciences, Orsay, 91400, France.
  3. Nguyet Thuy Tran: Université Paris-Saclay, CNRS, Faculté de Pharmacie, Institut Galien Paris-Saclay, Bâtiment Henri Moissan, 17 Avenue des Sciences, Orsay, 91400, France.
  4. Myriam Taverna: Université Paris-Saclay, CNRS, Faculté de Pharmacie, Institut Galien Paris-Saclay, Bâtiment Henri Moissan, 17 Avenue des Sciences, Orsay, 91400, France. ORCID

Abstract

In this study, we present a new approach for in-capillary fluorescent labeling of N-glycans prior to their analysis with CE coupled with laser-induced fluorescent detection. This integrated approach allows using a CE capillary as a microreactor to perform several steps required for labeling glycans with 8-aminopyrene-1,3,6 trisulfonic acid and at the same time as a separation channel for CE of fluorescently labeled glycans. This could be achieved through careful optimization of all different steps, including sequential injections of fluorescent dye and glycan plugs, mixing by transverse diffusion of laminar flow profiles, incubation in a thermostatic zone, and finally separation and detection with CE. Such a complex sample treatment protocol for glycan labeling that is feasible thus far only in batchwise mode can now be converted into an automated and integrated protocol. Our approach was applied successfully to analyze fluorescently labeled N-linked oligosaccharides released from human immunoglobulin G and rituximab, a monoclonal antibody used for cancer treatment. We demonstrated the superiority of this in-capillary approach over the conventional in-tube protocol, with fourfold less reagent consumption and full automation without remarkable degradation of the glycan separation profile obtained by capillary electrophoresis.

Keywords

References

  1. Trends Biochem Sci. 2015 Jul;40(7):351-9 [PMID: 26002999]
  2. Anal Chem. 2016 Dec 6;88(23):11364-11367 [PMID: 27813405]
  3. Anal Chem. 2014 Jun 17;86(12):5682-7 [PMID: 24909945]
  4. Electrophoresis. 2015 Mar;36(5):744-63 [PMID: 25330133]
  5. Anal Bioanal Chem. 2010 Aug;397(8):3457-81 [PMID: 20225063]
  6. Electrophoresis. 2017 Jan;38(1):162-189 [PMID: 27757981]
  7. Electrophoresis. 2018 Jan;39(1):179-189 [PMID: 28857216]
  8. Anal Chem. 2005 Sep 15;77(18):5925-9 [PMID: 16159123]
  9. Anal Biochem. 1995 Sep 20;230(2):273-80 [PMID: 7503418]
  10. J Sep Sci. 2021 Jan;44(1):403-425 [PMID: 33090644]
  11. Talanta. 2018 Aug 1;185:365-369 [PMID: 29759213]
  12. J Chromatogr A. 2021 Nov 8;1657:462593 [PMID: 34689907]
  13. Prog Mol Biol Transl Sci. 2019;162:1-24 [PMID: 30905444]
  14. J Chromatogr A. 2004 Apr 2;1032(1-2):173-84 [PMID: 15065794]
  15. Anal Bioanal Chem. 2006 Nov;386(5):1387-94 [PMID: 16953320]
  16. J Sep Sci. 2022 Jun;45(11):1918-1941 [PMID: 35325510]
  17. Biochim Biophys Acta Gen Subj. 2020 Oct;1864(10):129652 [PMID: 32512173]
  18. J Chromatogr A. 2013 Nov 29;1318:257-64 [PMID: 24148298]
  19. J Sep Sci. 2009 Mar;32(5-6):742-56 [PMID: 19278004]
  20. J Pharm Anal. 2018 Aug;8(4):226-233 [PMID: 30140486]
  21. Anal Chem. 2019 Jan 15;91(2):1375-1383 [PMID: 30525457]
  22. Talanta. 2018 Feb 1;178:530-537 [PMID: 29136858]
  23. J Sep Sci. 2022 Sep;45(18):3594-3603 [PMID: 35820058]
  24. Annu Rev Immunol. 2007;25:21-50 [PMID: 17029568]
  25. Talanta. 2018 Oct 1;188:516-521 [PMID: 30029407]
  26. J Chromatogr A. 2021 Jan 4;1635:461734 [PMID: 33264700]
  27. J Sep Sci. 2018 Oct;41(19):3764-3771 [PMID: 30063122]
  28. Chem Rev. 2018 Sep 12;118(17):7867-7885 [PMID: 29528644]
  29. Trends Biochem Sci. 2015 Jul;40(7):377-84 [PMID: 25840516]
  30. Anal Chem. 2018 Jan 2;90(1):208-224 [PMID: 29049885]
  31. Talanta. 2016 Nov 1;160:614-623 [PMID: 27591658]
  32. Anal Chem. 1999 Nov 15;71(22):5185-92 [PMID: 10575965]
  33. J Sep Sci. 2022 Jul;45(14):2766-2787 [PMID: 35593478]
  34. Anal Biochem. 1996 Jan 15;233(2):234-42 [PMID: 8789724]
  35. Drug Discov Today. 2016 May;21(5):740-65 [PMID: 26821133]
  36. J Chromatogr A. 2016 Nov 4;1471:192-200 [PMID: 27720173]

MeSH Term

Antibodies, Monoclonal
Fluorescent Dyes
Glycoproteins
Humans
Immunoglobulin G
Oligosaccharides
Polysaccharides
Pyrenes
Rituximab

Chemicals

Antibodies, Monoclonal
Fluorescent Dyes
Glycoproteins
Immunoglobulin G
Oligosaccharides
Polysaccharides
Pyrenes
Rituximab

Word Cloud

Created with Highcharts 10.0.0labelingapproachCEseparationfluorescentN-glycanscapillaryglycanprotocolin-capillarydetectionintegratedstepsglycans36fluorescentlylabeledtreatmentelectrophoresisstudypresentnewprioranalysiscoupledlaser-inducedallowsusingmicroreactorperformseveralrequired8-aminopyrene-1trisulfonicacidtimechannelachievedcarefuloptimizationdifferentincludingsequentialinjectionsdyeplugsmixingtransversediffusionlaminarflowprofilesincubationthermostaticzonefinallycomplexsamplefeasiblethusfarbatchwisemodecannowconvertedautomatedappliedsuccessfullyanalyzeN-linkedoligosaccharidesreleasedhumanimmunoglobulinGrituximabmonoclonalantibodyusedcancerdemonstratedsuperiorityconventionalin-tubefourfoldlessreagentconsumptionfullautomationwithoutremarkabledegradationprofileobtainedonlineelectrophoreticglycoproteins8-Aminopyrene-1trisulfonic-acidCapillaryGlycosylationIn-capillary

Similar Articles

Cited By