Imaging of Autonomous Bioluminescence Emission From Single Mammalian Cells.

Carola Gregor
Author Information
  1. Carola Gregor: Department of Optical Nanoscopy, Institut für Nanophotonik Göttingen e.V, Göttingen, Germany. carola.gregor@ifnano.de.

Abstract

The bioluminescent visualization of individual mammalian cells usually requires the addition of a luciferin substrate. This chapter describes the microscopic imaging of single cells by their bioluminescence (BL) emission generated without an external luciferin. Imaging is based on the expression of codon-optimized lux (co lux) genes and does not require manipulation of the cells apart from transfection. Due to the high brightness of the co lux system, light emission from single cells can be observed continuously for many hours using a specialized microscope.

Keywords

References

  1. Hall M, Unch J, Binkowski B et al (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857 [DOI: 10.1021/cb3002478]
  2. Yeh H, Karmach O, Ji A et al (2017) Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging. Nat Methods 14:971–974 [DOI: 10.1038/nmeth.4400]
  3. Iwano S, Sugiyama M, Hama H et al (2018) Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359:935–939 [DOI: 10.1126/science.aaq1067]
  4. Purtov K, Petushkov V, Baranov M et al (2015) The chemical basis of fungal bioluminescence. Angew Chem Int Ed Engl 54:8124–8128 [DOI: 10.1002/anie.201501779]
  5. Kaskova Z, Dörr F, Petushkov V et al (2017) Mechanism and color modulation of fungal bioluminescence. Sci Adv 3:e1602847 [DOI: 10.1126/sciadv.1602847]
  6. Kotlobay A, Sarkisyan K, Mokrushina Y et al (2018) Genetically encodable bioluminescent system from fungi. Proc Natl Acad Sci U S A 115:12728–12732 [DOI: 10.1073/pnas.1803615115]
  7. Cormier M, Kuwabara S (1965) Some observations on the properties of crystalline bacterial luciferase. Photochem Photobiol 4:1217–1225 [DOI: 10.1111/j.1751-1097.1965.tb09308.x]
  8. Puget K, Michelson A (1972) Studies in bioluminescence. VII. Bacterial NADH: flavin mononucleotide oxidoreductase. Biochimie 54:1197–1204 [DOI: 10.1016/S0300-9084(72)80024-5]
  9. Rodriguez A, Riendeau D, Meighen E (1983) Purification of the acyl coenzyme A reductase component from a complex responsible for the reduction of fatty acids in bioluminescent bacteria. J Biol Chem 258:5233–5237 [DOI: 10.1016/S0021-9258(18)32563-8]
  10. Rodriguez A, Wall L, Riendeau D et al (1983) Fatty acid acylation of proteins in bioluminescent bacteria. Biochemistry 22:5604–5611 [DOI: 10.1021/bi00293a023]
  11. Carey L, Rodriguez A, Meighen E (1984) Generation of fatty acids by an acyl esterase in the bioluminescent system of Photobacterium phosphoreum. J Biol Chem 259:10216–10221 [DOI: 10.1016/S0021-9258(18)90952-X]
  12. Close D, Patterson S, Ripp S et al (2010) Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line. PLoS One 5:e12441 [DOI: 10.1371/journal.pone.0012441]
  13. Xu T, Ripp S, Sayler G (2014) Expression of a humanized viral 2A-mediated lux operon efficiently generates autonomous bioluminescence in human cells. PLoS One 9:e96347 [DOI: 10.1371/journal.pone.0096347]
  14. Gregor C, Pape J, Gwosch K et al (2019) Autonomous bioluminescence imaging of single mammalian cells with the bacterial bioluminescence system. Proc Natl Acad Sci U S A 116:26491–26496 [DOI: 10.1073/pnas.1913616116]
  15. Bhaumik S, Gambhir S (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A 99:377–382 [DOI: 10.1073/pnas.012611099]
  16. Inoue Y, Sheng F, Kiryu S et al (2011) Gaussia luciferase for bioluminescence tumor monitoring in comparison with firefly luciferase. Mol Imaging 10:377–385 [PMID: 21521553]
  17. Zhao H, Doyle T, Wong R et al (2004) Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol Imaging 3:43–54 [DOI: 10.1162/153535004773861714]
  18. Gregor C, Gwosch K, Sahl S et al (2018) Strongly enhanced bacterial bioluminescence with the ilux operon for single-cell imaging. Proc Natl Acad Sci U S A 115:962–967 [DOI: 10.1073/pnas.1715946115]
  19. Gregor C (2020) Bioluminescent imaging of single bacterial cells using an enhanced ilux operon. In: Ripp S (ed) Bioluminescent imaging: methods and protocols, Methods Mol Biol, vol 2081. Springer, pp 43–52 [DOI: 10.1007/978-1-4939-9940-8_4]

MeSH Term

Animals
Codon
Immunologic Tests
Luminescent Measurements
Mammals
Microscopy
Transfection

Chemicals

Codon

Word Cloud

Created with Highcharts 10.0.0cellsluxImagingluciferinsingleBLemissioncoBioluminescencebioluminescentvisualizationindividualmammalianusuallyrequiresadditionsubstratechapterdescribesmicroscopicimagingbioluminescencegeneratedwithoutexternalbasedexpressioncodon-optimizedgenesrequiremanipulationaparttransfectionDuehighbrightnesssystemlightcanobservedcontinuouslymanyhoursusingspecializedmicroscopeAutonomousEmissionSingleMammalianCellsLuciferaseMicroscopy

Similar Articles

Cited By

No available data.