Detection of cell markers from single cell RNA-seq with sc2marker.

Ronghui Li, Bella Banjanin, Rebekka K Schneider, Ivan G Costa
Author Information
  1. Ronghui Li: Joint Research Center for Computational Biomedicine, Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany.
  2. Bella Banjanin: Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
  3. Rebekka K Schneider: Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
  4. Ivan G Costa: Joint Research Center for Computational Biomedicine, Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany. ivan.costa@rwth-aachen.de.

Abstract

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) allows the detection of rare cell types in complex tissues. The detection of markers for rare cell types is useful for further biological analysis of, for example, flow cytometry and imaging data sets for either physical isolation or spatial characterization of these cells. However, only a few computational approaches consider the problem of selecting specific marker genes from scRNA-seq data.
RESULTS: Here, we propose sc2marker, which is based on the maximum margin index and a database of proteins with antibodies, to select markers for flow cytometry or imaging. We evaluated the performances of sc2marker and competing methods in ranking known markers in scRNA-seq data of immune and stromal cells. The results showed that sc2marker performed better than the competing methods in accuracy, while having a competitive running time.

Keywords

References

  1. J Biomed Inform. 2015 Feb;53:405-14 [PMID: 25464113]
  2. MAbs. 2017 Oct;9(7):1143-1154 [PMID: 28726542]
  3. Elife. 2020 Apr 14;9: [PMID: 32286228]
  4. Elife. 2021 Apr 16;10: [PMID: 33861199]
  5. Nat Rev Immunol. 2016 Jul;16(7):449-62 [PMID: 27320317]
  6. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  7. Nat Commun. 2021 Feb 17;12(1):1088 [PMID: 33597522]
  8. Methods Mol Biol. 2019;1959:247-259 [PMID: 30852827]
  9. Genome Biol. 2015 Dec 10;16:278 [PMID: 26653891]
  10. Cell Stem Cell. 2021 Apr 1;28(4):637-652.e8 [PMID: 33301706]
  11. Nat Methods. 2016 Nov 29;13(12):966-967 [PMID: 27898060]
  12. Mol Syst Biol. 2019 Oct;15(10):e9005 [PMID: 31657111]
  13. Science. 2015 Jan 23;347(6220):1260419 [PMID: 25613900]
  14. Sci Rep. 2017 Mar 30;7:45477 [PMID: 28358118]
  15. Genome Biol. 2021 Dec 1;22(1):321 [PMID: 34847932]
  16. PLoS One. 2015 Apr 20;10(3):e0121314 [PMID: 25894527]
  17. Cell. 2018 Jul 26;174(3):716-729.e27 [PMID: 29961576]
  18. Blood. 2012 Jun 7;119(23):5429-37 [PMID: 22553313]
  19. Neuroinformatics. 2016 Apr;14(2):169-82 [PMID: 26589523]
  20. Nat Commun. 2020 Aug 27;11(1):4307 [PMID: 32855414]
  21. Bioinformatics. 2019 Jan 15;35(2):301-308 [PMID: 29931307]
  22. Toxicol Appl Pharmacol. 2005 Sep 1;207(2 Suppl):149-51 [PMID: 16153988]
  23. Nat Med. 2020 Jul;26(7):1070-1076 [PMID: 32514174]
  24. Cell. 2018 Feb 22;172(5):1091-1107.e17 [PMID: 29474909]
  25. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  26. Bioinformatics. 2017 Apr 1;33(7):1014-1020 [PMID: 28062447]
  27. Nucleic Acids Res. 2021 Jan 8;49(D1):D939-D946 [PMID: 33152070]
  28. Nat Cell Biol. 2020 Jan;22(1):38-48 [PMID: 31871321]
  29. BMC Bioinformatics. 2020 Oct 23;21(1):477 [PMID: 33097004]

Grants

  1. Fibromap/Bundesministerium für Bildung und Forschung
  2. CRU 344/Deutsche Forschungsgemeinschaft

MeSH Term

Gene Expression Profiling
RNA-Seq
Sequence Analysis, RNA
Single-Cell Analysis
Software
Exome Sequencing

Word Cloud

Created with Highcharts 10.0.0cellmarkerssc2markerscRNA-seqdatadetectionraretypesflowcytometryimagingcellsmargincompetingmethodsRNA-seqBACKGROUND:Single-cellRNAsequencingallowscomplextissuesusefulbiologicalanalysisexamplesetseitherphysicalisolationspatialcharacterizationHowevercomputationalapproachesconsiderproblemselectingspecificmarkergenesRESULTS:proposebasedmaximumindexdatabaseproteinsantibodiesselectevaluatedperformancesrankingknownimmunestromalresultsshowedperformedbetteraccuracycompetitiverunningtimeDetectionsingleMarkeridentificationMaximumSingle

Similar Articles

Cited By