A van der Waals force-based adhesion study of stem cells exposed to cold atmospheric plasma jets.

Kobra Hajizadeh, Hassan Mehdian, Kamal Hajisharifi, Eric Robert
Author Information
  1. Kobra Hajizadeh: Physics department, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran.
  2. Hassan Mehdian: Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, 15614, Iran.
  3. Kamal Hajisharifi: Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, 15614, Iran. hajisharifi@khu.ac.ir.
  4. Eric Robert: UMR 7344, CNRS/Université d'Orléans, GREMI, Orléans, France.

Abstract

Cold atmospheric plasma has established its effect on cell adhesion. Given the importance of cell adhesion in stem cells, the current study investigates the effect of plasma treatment on Human Bone Marrow Mesenchymal Stem Cells (HBMMSCs) adhesion by which the differentiation and fate of cells are determined. In this paper, adhesion modification is considered not only for cell- ECM (Extra cellular Matrix), but also between suspended cells, and enhanced adhesions were found in both circumstances. Regarding the previous works, the increase of the cell-ECM adhesion during the plasma therapy was mostly attributed to the enhancement of the production and activity of integrin proteins. Nevertheless, considering the importance of van der Waals forces at the cellular level, the effect of cold plasma on VDWFs and so its effect on adhesion is investigated in this work for the first time, to the best of our knowledge. For this purpose, employing the semi-empirical methods, the role of the plasma therapy on the VDWF between the cells has been studied at three levels; (a) plasma-induced dipole formation, (b) Hammaker coefficient modification of culture medium, and c) cell roughness modification. For suspended cell condition, we conclude and support that van der Waals forces (VDWFs) enhancement has a key role in cell adhesion processes. We believe that, the present work gives a new physical insight in studying the plasma therapy method at the cellular level.

References

  1. Morfill, G., Kong, M. G. & Zimmermann, J. Focus on plasma medicine. New J. Phys. 11(11), 115011 (2009). [DOI: 10.1088/1367-2630/11/11/115011]
  2. Vandamme, M. et al. Antitumor effect of plasma treatment on u87 glioma xenografts: Preliminary results. Plasma Processes Polym. 7(3–4), 264–273 (2010). [DOI: 10.1002/ppap.200900080]
  3. Collet, G. et al. Plasma jet-induced tissue oxygenation: Potentialities for new therapeutic strategies. Plasma Sources Sci. Technol. 23(1), 012005 (2014). [DOI: 10.1088/0963-0252/23/1/012005]
  4. Keidar, M. et al. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br. J. Cancer 105(9), 1295–1301 (2011). [PMID: 21979421]
  5. Isbary, G. et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br. J. Dermatol. 163(1), 78–82 (2010). [PMID: 20222930]
  6. Isbary, G. et al. Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: Results of an open retrospective randomized controlled study in vivo. Clin. Plasma Med. 1(2), 25–30 (2013). [DOI: 10.1016/j.cpme.2013.06.001]
  7. Maho, T. et al. Anti-bacterial action of plasma multi-jets in the context of chronic wound healing. Appl. Sci. 11(20), 9598 (2021). [DOI: 10.3390/app11209598]
  8. Maradudin, A. A. & Mazur, P. Effects of surface roughness on the van der waals force between macroscopic bodies. Phys. Rev. B 22(4), 1677 (1980). [DOI: 10.1103/PhysRevB.22.1677]
  9. Goitre, L., Pergolizzi, B., Ferro, E., Trabalzini, L., & Retta, S.F. Molecular crosstalk between integrins and cadherins: do reactive oxygen species set the talk?, J. Signal Transduct. (2012).
  10. Hurd, T. R., DeGennaro, M. & Lehmann, R. Redox regulation of cell migration and adhesion. Trends Cell Biol. 22(2), 107–115 (2012). [PMID: 22209517]
  11. Di Meo, S., Reed, T. T., Venditti, P. & Victor, V. M. Role of ros and rns sources in physiological and pathological conditions. Oxid. Med. Cell. Long. 1, 1 (2016).
  12. Moldogazieva, N. T., Lutsenko, S. V. & Terentiev, A. A. Reactive oxygen and nitrogen species-induced protein modifications: Implication in carcinogenesis and anticancer therapy. Can. Res. 78(21), 6040–6047 (2018). [DOI: 10.1158/0008-5472.CAN-18-0980]
  13. Privat-Maldonado, A. et al. Ros from physical plasmas: Redox chemistry for biomedical therapy. Oxid. Med. Cell. Long. 1, 1 (2019).
  14. Vijayarangan, V. et al. Cold atmospheric plasma parameters investigation for efficient drug delivery in hela cells. IEEE Trans. Radiat. Plasma Med. Sci. 2(2), 109–115 (2017). [DOI: 10.1109/TRPMS.2017.2759322]
  15. Lee, D., Park, J. M., Hong, S. H. & Kim, Y. Numerical simulation on mode transition of atmospheric dielectric barrier discharge in helium-oxygen mixture. IEEE Trans. Plasma Sci. 33(2), 949–957 (2005). [DOI: 10.1109/TPS.2005.844493]
  16. Khalili, A. A. & Ahmad, M. R. A review of cell adhesion studies for biomedical and biological applications. Int. J. Mol. Sci. 16(8), 18149–18184 (2015). [PMID: 26251901]
  17. Huang, S. & Ingber, D. E. The structural and mechanical complexity of cell-growth control. Nat. Cell Biol. 1(5), E131–E138 (1999). [PMID: 10559956]
  18. Vijayarangan, V. et al. New insights on molecular internalization and drug delivery following plasma jet exposures. Int. J. Pharm. 589, 119874 (2020). [PMID: 32927002]
  19. Hale, J. S., Li, M. & Lathia, J. D. The malignant social network: Cell–cell adhesion and communication in cancer stem cells. Cell Adhesion Migration 6(4), 346–355 (2012). [PMID: 22796941]
  20. Kirby, B. J., Wheeler, A. R., Zare, R. N., Fruetel, J. A. & Shepodd, T. J. Programmable modification of cell adhesion and zeta potential in silica microchips. Lab Chip 3(1), 5–10 (2003). [PMID: 15100798]
  21. McEver, R. P. & Zhu, C. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 26, 363–396 (2010). [PMID: 19575676]
  22. Steinberg, M. S. & McNutt, P. M. Cadherins and their connections: Adhesion junctions have broader functions. Curr. Opin. Cell Biol. 11(5), 554–560 (1999). [PMID: 10508659]
  23. Kendall, K. & Roberts, A. van der waals forces influencing adhesion of cells. Philos. Trans. R. Soc. B Biol. Sci. 370(1661), 20140078 (2015). [DOI: 10.1098/rstb.2014.0078]
  24. Iwabuchi, E., Miki, Y., Takagi, K., Onodera, Y., Shibahara, Y., Ishida, T., Suzuki, T., & Sasano, H. The expression of carcinoembryonic antigen-related cell adhesion molecule 6 and 8 in breast cancer (2019).
  25. Perinpanayagam, H. et al. Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts. J. Orthop. Res. 19(6), 993–1000 (2001). [PMID: 11781027]
  26. Nir, S. & Andersen, M. Van der waals interactions between cell surfaces. J. Membr. Biol. 31(1), 1–18 (1977). [PMID: 839528]
  27. Valchev, G., Djondjorov, P., Vassilev, V., & Dantchev, D. Van der waals interactions between planar substrate and tubular lipid membranes undergoing pearling instability, in AIP Conference Proceedings, vol. 1895, p. 090002, AIP Publishing LLC, 2017.
  28. Lasky, L. A. et al. An endothelial ligand for l-selectin is a novel mucin-like molecule. Cell 69(6), 927–938 (1992). [PMID: 1376638]
  29. Hirohashi, S. & Kanai, Y. Cell adhesion system and human cancer morphogenesis. Cancer Sci. 94(7), 575–581 (2003). [PMID: 12841864]
  30. T. Okegawa, R.-C. Pong, Y. Li, and J.-T. Hsieh, The role of cell adhesion molecule in cancer progression and its application in cancer therapy., Acta Biochim. Polon. 51(2), 445–457 (2004).
  31. Trošt, Z. et al. A microarray based identification of osteoporosis-related genes in primary culture of human osteoblasts. Bone 46(1), 72–80 (2010). [PMID: 19781675]
  32. Haertel, B., Von Woedtke, T., Weltmann, K.-D. & Lindequist, U. Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol. Tthe. 22(6), 477 (2014). [DOI: 10.4062/biomolther.2014.105]
  33. Haertel, B., Wende, K., von Woedtke, T., Weltmann, K. D. & Lindequist, U. Non-thermal atmospheric-pressure plasma can influence cell adhesion molecules on hacat-keratinocytes. Exp. Dermatol. 20(3), 282–284 (2011). [PMID: 21054557]
  34. Pai, K. et al. Investigation of the roles of plasma species generated by surface dielectric barrier discharge. Sci. Rep. 8(1), 1–13 (2018). [DOI: 10.1038/s41598-018-35166-0]
  35. M. Keidar, A. Shashurin, O. Volotskova, M. Ann Stepp, P. Srinivasan, A. Sandler, and B. Trink, Cold atmospheric plasma in cancer therapy, Physics of Plasmas, vol. 20, no. 5, p. 057101, 2013.
  36. Volotskova, O., Stepp, M. A. & Keidar, M. Integrin activation by a cold atmospheric plasma jet. New J. Phys. 14(5), 053019 (2012). [DOI: 10.1088/1367-2630/14/5/053019]
  37. Hajizadeh, K., Hajisharifi, K. & Mehdian, H. Morphological risk assessment of cold atmospheric plasma-based therapy: bone marrow mesenchymal stem cells in treatment zone proximity. J. Phys. D Appl. Phys. 52(49), 495203 (2019). [DOI: 10.1088/1361-6463/ab3f65]
  38. Wilson, H. On some phenomena of coalescence and regeneration in sponges. J. Elisha Mitchell Sci. Soc. 23(4), 161–174 (1907).
  39. Huxley, J. S. Some phenomena of regeneration in sycon: with a note on the structure of its collar-cells. Philos. Trans. R. Soc. Lond. Ser. B 202(282–293), 165–189 (1912).
  40. Sen, S. & Kumar, S. Cell-matrix de-adhesion dynamics reflect contractile mechanics. Cell. Mol. Bioeng. 2(2), 218–230 (2009). [PMID: 21297858]
  41. Horzum, U., Ozdil, B. & Pesen-Okvur, D. Step-by-step quantitative analysis of focal adhesions. MethodsX 1, 56–59 (2014). [PMID: 26150935]
  42. Shashurin, A. et al. Influence of cold plasma atmospheric jet on surface integrin expression of living cells. Plasma Processes Polym. 7(3–4), 294–300 (2010). [DOI: 10.1002/ppap.200900086]
  43. Haertel, B. et al. Differential influence of components resulting from atmospheric-pressure plasma on integrin expression of human hacat keratinocytes. BioMed Res. Int 1, 1 (2013). [DOI: 10.1155/2013/761451]
  44. Podo, F. Dielectric and electronic properties of biological materials: R. pethig. john wiley & sons, Chichester, New York, Brisbane, Toronto (1979), xiv+ 376 pp.,£ 15.00. (1979).
  45. G. Cevc, Membrane electrostatics, Biochim. Biophys. Acta (BBA)-Rev. Biomembr., 1031(3), 311–382 (1990).
  46. Carstensen, E. & Marquis, R. Passive electrical properties of microorganisms: Iii conductivity of isolated bacterial cell walls. Biophys. J. 8(5), 536–548 (1968). [PMID: 5699794]
  47. Carstensen, E. & Marquis, R. Dielectric and electrochemical properties of bacterial cells 563–571 (Spores VI. American Society for Microbiology, Washington, DC, 1975).
  48. James, A. The electrical properties and topochemistry of bacterial cells. Adv. Coll. Interface. Sci. 15(3–4), 171–221 (1982). [DOI: 10.1016/0001-8686(82)80001-8]
  49. Bongrand, P., Claesson, P. M. & Curtis, A. S. Studying cell adhesion (Springer, Berlin, 2013).
  50. J. D. Jackson, Classical electrodynamics (1999).
  51. Hamaker, H. C. The London—van der Waals attraction between spherical particles. Physica 4(10), 1058–1072 (1937). [DOI: 10.1016/S0031-8914(37)80203-7]

MeSH Term

Cell Adhesion
Cell Differentiation
Humans
Integrins
Mesenchymal Stem Cells
Plasma Gases

Chemicals

Integrins
Plasma Gases

Word Cloud

Created with Highcharts 10.0.0adhesionplasmacellcellseffectmodificationcellulartherapyvanderWaalsatmosphericimportancestemstudysuspendedenhancementforceslevelcoldVDWFsworkroleColdestablishedGivencurrentinvestigatestreatmentHumanBoneMarrowMesenchymalStemCellsHBMMSCsdifferentiationfatedeterminedpaperconsideredcell-ECMExtraMatrixalsoenhancedadhesionsfoundcircumstancesRegardingpreviousworksincreasecell-ECMmostlyattributedproductionactivityintegrinproteinsNeverthelessconsideringinvestigatedfirsttimebestknowledgepurposeemployingsemi-empiricalmethodsVDWFstudiedthreelevelsplasma-induceddipoleformationbHammakercoefficientculturemediumcroughnessconditionconcludesupportkeyprocessesbelievepresentgivesnewphysicalinsightstudyingmethodforce-basedexposedjets

Similar Articles

Cited By (1)