Beneficial metabolic effects of recurrent periods of beta-cell rest and stimulation using stable neuropeptide Y1 and glucagon-like peptide-1 receptor agonists.

Neil Tanday, Ryan A Lafferty, Peter R Flatt, Nigel Irwin
Author Information
  1. Neil Tanday: Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland.
  2. Ryan A Lafferty: Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland.
  3. Peter R Flatt: Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland.
  4. Nigel Irwin: Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland. ORCID

Abstract

AIM: To examine whether sequential administration of (d-Arg )-sea lamprey peptide tyrosine tyrosine (1-36) (SL-PYY) and the glucagon-like peptide-1 (GLP-1) mimetic, liraglutide, has beneficial effects in diabetes.
METHODS: SL-PYY is an enzymatically stable neuropeptide Y1 receptor (NPY1R) agonist known to induce pancreatic beta-cell rest and improve overall beta-cell health. We employed SL-PYY and liraglutide to induce appropriate recurrent periods of beta-cell rest and stimulation, to assess therapeutic benefits in high fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice.
RESULTS: Previous studies confirm that, at a dose of 0.25 nmol/kg, liraglutide exerts bioactivity over an 8-12 hour period in mice. Initial pharmacokinetic analysis revealed that 75 nmol/kg SL-PYY yielded a similar plasma drug time profile. When SL-PYY (75 nmol/kg) and liraglutide (0.25 nmol/kg) were administered sequentially at 08:00 AM and 08:00 PM, respectively, to HFF-STZ mice for 28 days, reductions in energy intake, body weight, circulating glucose, insulin and glucagon were noted. Similarly positive, but slightly less striking, effects were also apparent with twice-daily liraglutide-only therapy. The sequential SL-PYY and liraglutide treatment also improved insulin sensitivity and glucose-induced insulin secretory responses, which was not apparent with liraglutide treatment, although benefits on glucose tolerance were mild. Interestingly, combined therapy also elevated pancreatic insulin, decreased pancreatic glucagon and enhanced the plasma insulin/glucagon ratio compared with liraglutide alone. This was not associated with an enhancement of beneficial changes in islet cell areas, proliferation or apoptosis compared with liraglutide alone, but the numbers of centrally stained glucagon-positive islet cells were reduced by sequential combination therapy.
CONCLUSION: These data show that NPY1R-induced intervals of beta-cell rest, combined with GLP-1R-stimulated periods of beta-cell stimulation, should be further evaluated as an effective treatment option for obesity-driven forms of diabetes.

Keywords

References

  1. Diabetes. 1999 Apr;48(4):839-47 [PMID: 10102702]
  2. Diabetes Obes Metab. 2022 Dec;24(12):2353-2363 [PMID: 35848461]
  3. Biochem Pharmacol. 2018 Dec;158:95-102 [PMID: 30292757]
  4. Br J Pharmacol. 2022 Feb;179(4):526-541 [PMID: 33822370]
  5. Peptides. 2022 Apr;150:170715 [PMID: 34958851]
  6. Biochem Pharmacol. 2020 Jan;171:113723 [PMID: 31756326]
  7. Lancet. 1976 Feb 28;1(7957):444-7 [PMID: 55717]
  8. Behav Brain Res. 2001 Nov 1;125(1-2):89-91 [PMID: 11682098]
  9. Diabetes Care. 2008 Oct;31(10):1927-32 [PMID: 18556343]
  10. Diabetes Metab J. 2016 Apr;40(2):99-114 [PMID: 27126881]
  11. Diabetes. 2013 Oct;62(10):3316-23 [PMID: 23818527]
  12. Clin Med Insights Endocrinol Diabetes. 2019 Jun 17;12:1179551419855626 [PMID: 31244528]
  13. Endocrinology. 2021 Sep 1;162(9): [PMID: 33914056]
  14. Diabetologia. 1981 May;20(5):573-7 [PMID: 7026332]
  15. Front Endocrinol (Lausanne). 2021 Feb 25;12:633625 [PMID: 33716983]
  16. Biochem Pharmacol. 2021 Jan;183:114355 [PMID: 33279496]
  17. Diabetes Obes Metab. 2020 Mar;22(3):404-416 [PMID: 31692207]
  18. Am J Physiol Endocrinol Metab. 2000 Sep;279(3):E520-8 [PMID: 10950818]
  19. J Epidemiol Glob Health. 2020 Mar;10(1):107-111 [PMID: 32175717]
  20. Curr Opin Endocrinol Diabetes Obes. 2021 Apr 1;28(2):253-261 [PMID: 33395088]
  21. Peptides. 2020 Mar;125:170205 [PMID: 31738969]
  22. J Endocrinol. 2002 Aug;174(2):233-46 [PMID: 12176662]
  23. Metabolism. 2006 May;55(5):691-5 [PMID: 16631447]
  24. Peptides. 1992 May-Jun;13(3):581-7 [PMID: 1326105]
  25. Biochim Biophys Acta. 2015 Jun;1850(6):1206-14 [PMID: 25688757]
  26. Obes Res Clin Pract. 2019 Sep - Oct;13(5):505-510 [PMID: 31466832]
  27. Pediatr Diabetes. 2008 Jun;9(3 Pt 2):14-22 [PMID: 18221429]
  28. Diabetes. 2003 Oct;52(10):2513-8 [PMID: 14514634]
  29. Diabetes Obes Metab. 2017 Sep;19(9):1205-1213 [PMID: 28295962]
  30. Biochim Biophys Acta Gen Subj. 2020 May;1864(5):129543 [PMID: 32007578]
  31. Biochem Biophys Res Commun. 2009 Dec 18;390(3):809-14 [PMID: 19836346]
  32. Diabetologia. 1995 Jun;38(6):720-5 [PMID: 7672496]
  33. Mol Cell Endocrinol. 2016 Nov 15;436:102-13 [PMID: 27465830]
  34. J Endocrinol. 2020 Apr;245(1):53-64 [PMID: 31977315]
  35. Eur J Pharmacol. 2012 Jan 15;674(2-3):294-306 [PMID: 22115896]
  36. Curr Diab Rep. 2009 Jun;9(3):215-20 [PMID: 19490823]
  37. Eur J Pharmacol. 2002 Sep 13;451(2):217-25 [PMID: 12231394]
  38. Diabet Med. 2021 Dec;38(12):e14699 [PMID: 34562330]
  39. J Clin Endocrinol Metab. 2004 Feb;89(2):795-805 [PMID: 14764798]
  40. J Biol Chem. 2002 Sep 13;277(37):34168-75 [PMID: 12101177]
  41. Diabetologia. 2015 Sep;58(9):2144-53 [PMID: 26048235]
  42. Nat Commun. 2021 May 11;12(1):2622 [PMID: 33976180]
  43. Peptides. 2020 Mar;125:170207 [PMID: 31765668]
  44. Physiol Rep. 2015 Jul;3(7): [PMID: 26197931]
  45. Endocrinology. 1967 May;80(5):975-8 [PMID: 5337153]
  46. J Endocrinol. 2000 Apr;165(1):93-9 [PMID: 10750039]
  47. Eur J Endocrinol. 2002 Jun;146(6):871-9 [PMID: 12039709]
  48. Int J Clin Pract Suppl. 2010 Oct;(167):4-11 [PMID: 20887299]
  49. Eur J Med Chem. 2022 Apr 5;233:114214 [PMID: 35231829]
  50. Food Chem Toxicol. 2017 Feb;100:161-167 [PMID: 28027979]
  51. Diabetes Obes Metab. 2017 Mar;19(3):336-347 [PMID: 27860132]

MeSH Term

Animals
Mice
Blood Glucose
Diabetes Mellitus, Experimental
Glucagon
Glucagon-Like Peptide-1 Receptor
Glucose
Insulin
Liraglutide
Neuropeptides
Peptide YY
Streptozocin
Tyrosine
Neuropeptide Y

Chemicals

Blood Glucose
Glucagon
Glucagon-Like Peptide-1 Receptor
Glucose
Insulin
Liraglutide
Neuropeptides
Peptide YY
Streptozocin
Tyrosine
Neuropeptide Y

Word Cloud

Created with Highcharts 10.0.0liraglutidebeta-cellSL-PYYinsulinrestmicesequentialeffectsdiabetespancreaticperiodsstimulationalsotherapytreatmenttyrosineglucagon-likepeptide-1GLP-1beneficialstableneuropeptideY1receptorinducehealthrecurrentbenefitsHFF-STZ025 nmol/kg75 nmol/kgplasmaglucoseglucagonapparentcombinedcomparedaloneisletAIM:examinewhetheradministrationd-Arg-sealampreypeptide1-36mimeticMETHODS:enzymaticallyNPY1RagonistknownimproveoverallemployedappropriateassesstherapeutichighfatfedHFFstreptozotocinSTZ-induceddeficiencynamelyRESULTS:Previousstudiesconfirmdoseexertsbioactivity8-12 hourperiodInitialpharmacokineticanalysisrevealedyieldedsimilardrugtimeprofileadministeredsequentially08:00AM08:00 PMrespectively28 daysreductionsenergyintakebodyweightcirculatingnotedSimilarlypositiveslightlylessstrikingtwice-dailyliraglutide-onlyimprovedsensitivityglucose-inducedsecretoryresponsesalthoughtolerancemildInterestinglyelevateddecreasedenhancedinsulin/glucagonratioassociatedenhancementchangescellareasproliferationapoptosisnumberscentrallystainedglucagon-positivecellsreducedcombinationCONCLUSION:datashowNPY1R-inducedintervalsGLP-1R-stimulatedevaluatedeffectiveoptionobesity-drivenformsBeneficialmetabolicusingagonistsPYY

Similar Articles

Cited By (4)