Transcriptome analyses unveiled differential regulation of AGO and DCL genes by pepino mosaic virus strains.

Cristina Alcaide, Livia Donaire, Miguel A Aranda
Author Information
  1. Cristina Alcaide: Department of Stress Biology and Plant Pathology, Centro de Edafolog��a y Biolog��a Aplicada del Segura-CSIC, Murcia, Spain. ORCID
  2. Livia Donaire: Department of Stress Biology and Plant Pathology, Centro de Edafolog��a y Biolog��a Aplicada del Segura-CSIC, Murcia, Spain. ORCID
  3. Miguel A Aranda: Department of Stress Biology and Plant Pathology, Centro de Edafolog��a y Biolog��a Aplicada del Segura-CSIC, Murcia, Spain. ORCID

Abstract

Pepino mosaic virus (PepMV) is a single-stranded (ss), positive-sense (+) RNA potexvirus that affects tomato crops worldwide. We have described an in planta antagonistic interaction between PepMV isolates of two strains in which the EU isolate represses the accumulation of the CH2 isolate during mixed infections. Reports describing transcriptomic responses to mixed infections are scant. We carried out transcriptomic analyses of tomato plants singly and mixed-infected with two PepMV isolates of both strains. Comparison of the transcriptomes of singly infected plants showed that deeper transcriptomic alterations occurred at early infection times, and also that each of the viral strains modulated the host transcriptome differentially. Mixed infections caused transcriptomic alterations similar to those for the sum of single infections at early infection times, but clearly differing at later times postinfection. We next tested the hypothesis that PepMV-EU, in either single or mixed infections, deregulates host gene expression differentially so that virus accumulation of both strains gets repressed. That seemed to be the case for the genes AGO1a, DCL2d, AGO2a, and DCL2b, which are involved in the antiviral silencing pathway and were upregulated by PepMV-EU but not by PepMV-CH2 at early times postinfection. The pattern of AGO2a expression was validated by reverse transcription-quantitative PCR in tomato and Nicotiana benthamiana plants. Using an N. benthamiana ago2 mutant line, we showed that AGO2 indeed plays an important role in the antiviral defence against PepMV, but it is not the primary determinant of the outcome of the antagonistic interaction between the two PepMV strains.

Keywords

References

  1. Int J Mol Sci. 2022 Feb 23;23(5): [PMID: 35269578]
  2. Virus Res. 2021 Apr 2;295:198293 [PMID: 33412165]
  3. Mol Plant Microbe Interact. 2013 Dec;26(12):1486-98 [PMID: 23945002]
  4. Nucleic Acids Res. 2019 May 7;47(8):e47 [PMID: 30783653]
  5. Arabidopsis Book. 2011;9:e0146 [PMID: 22303271]
  6. Trends Plant Sci. 2006 Mar;11(3):142-51 [PMID: 16473542]
  7. Mol Plant Microbe Interact. 2014 Dec;27(12):1356-69 [PMID: 25162316]
  8. BMC Genomics. 2016 Jun 07;17:429 [PMID: 27267368]
  9. Curr Opin Virol. 2021 Jun;48:30-41 [PMID: 33845410]
  10. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  11. Sci Rep. 2017 Apr 21;7(1):1010 [PMID: 28432338]
  12. Curr Opin Plant Biol. 2007 Oct;10(5):466-72 [PMID: 17904410]
  13. Funct Integr Genomics. 2009 Aug;9(3):277-86 [PMID: 19221817]
  14. Arch Virol. 2002 Oct;147(10):2009-15 [PMID: 12376761]
  15. PLoS One. 2012;7(8):e43447 [PMID: 22952684]
  16. FEBS Lett. 2005 Oct 31;579(26):5858-71 [PMID: 16242131]
  17. Virus Evol. 2021 Feb 23;7(1):veab017 [PMID: 33815829]
  18. Plants (Basel). 2021 Jan 25;10(2): [PMID: 33504044]
  19. Plant Physiol. 2017 Jul;174(3):1779-1794 [PMID: 28515146]
  20. Virology. 2018 Mar;516:1-20 [PMID: 29316505]
  21. Annu Rev Phytopathol. 2009;47:153-76 [PMID: 19400642]
  22. Mol Plant Pathol. 2019 Mar;20(3):432-446 [PMID: 30343523]
  23. Nature. 2004 Sep 16;431(7006):356-63 [PMID: 15372043]
  24. Annu Rev Virol. 2021 Sep 29;8(1):183-199 [PMID: 34242062]
  25. Annu Rev Virol. 2014 Nov;1(1):237-59 [PMID: 26958722]
  26. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  27. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  28. Methods Mol Biol. 1998;81:131-43 [PMID: 9760500]
  29. Plant Physiol. 2011 May;156(1):301-18 [PMID: 21427280]
  30. Front Plant Sci. 2018 Mar 19;9:355 [PMID: 29616066]
  31. Front Plant Sci. 2012 Dec 12;3:276 [PMID: 23248633]
  32. Bioinformatics. 2012 Oct 15;28(20):2678-9 [PMID: 22914218]
  33. Curr Opin Plant Biol. 2015 Oct;27:111-7 [PMID: 26190744]
  34. Plant J. 2005 Nov;44(3):471-82 [PMID: 16236156]
  35. Front Microbiol. 2021 Jul 06;12:694492 [PMID: 34295323]
  36. Adv Virus Res. 2012;84:505-32 [PMID: 22682177]
  37. Front Physiol. 2019 Apr 03;10:302 [PMID: 31001125]
  38. J Gen Virol. 2003 Jun;84(Pt 6):1351-1366 [PMID: 12771402]
  39. Curr Protein Pept Sci. 2017;18(4):335-351 [PMID: 27323805]
  40. Nat Chem Biol. 2007 Jan;3(1):36-43 [PMID: 17173028]
  41. Genome Biol. 2010;11(2):R14 [PMID: 20132535]
  42. Virol J. 2018 Sep 3;15(1):138 [PMID: 30176884]
  43. Plant Methods. 2011 Mar 11;7:6 [PMID: 21396092]
  44. Nat Cell Biol. 2000 Nov;2(11):826-32 [PMID: 11056538]
  45. Mol Plant Pathol. 2010 Mar;11(2):179-89 [PMID: 20447268]
  46. Phytopathology. 2020 Jan;110(1):29-48 [PMID: 31544593]
  47. Plant Cell Physiol. 2004 Sep;45(9):1185-93 [PMID: 15509841]
  48. Virol J. 2016 Dec 2;13(1):202 [PMID: 27912765]
  49. J Virol. 2008 Jun;82(11):5167-77 [PMID: 18353962]
  50. FEMS Microbiol Ecol. 2016 Nov;92(11): [PMID: 27549115]
  51. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  52. Nat Rev Microbiol. 2013 Nov;11(11):745-60 [PMID: 24129510]
  53. J Virol. 2014 Mar;88(6):3359-68 [PMID: 24390328]
  54. J Virol. 2007 Apr;81(8):3797-806 [PMID: 17267504]
  55. Mol Plant Pathol. 2017 Oct;18(8):1175-1188 [PMID: 27539720]
  56. Int J Mol Sci. 2020 Aug 14;21(16): [PMID: 32824010]
  57. PLoS Biol. 2004 May;2(5):E104 [PMID: 15024409]
  58. Front Plant Sci. 2013 Jan 31;4:6 [PMID: 23386855]
  59. Front Microbiol. 2012 Jun 25;3:229 [PMID: 22737149]
  60. Elife. 2015 Dec 16;4:e11795 [PMID: 26673077]
  61. Cell. 2007 Aug 10;130(3):413-26 [PMID: 17693253]
  62. Plant J. 2013 Jul;75(2):290-308 [PMID: 23379770]
  63. Mol Plant Pathol. 2022 Nov;23(11):1592-1607 [PMID: 35852033]
  64. Theor Exp Plant Physiol. 2019 Mar;31(1):227-248 [PMID: 31355128]
  65. Phytopathology. 2006 Mar;96(3):274-9 [PMID: 18944442]
  66. Phytopathology. 2020 Jan;110(1):49-57 [PMID: 31524081]
  67. Virol J. 2013 Apr 12;10:117 [PMID: 23587202]
  68. J Cell Biol. 2013 Jun 24;201(7):981-95 [PMID: 23798728]
  69. Nat Rev Immunol. 2010 Sep;10(9):632-44 [PMID: 20706278]
  70. Plant Dis. 2000 Jan;84(1):103 [PMID: 30841211]
  71. Front Plant Sci. 2014 Mar 18;5:60 [PMID: 24672528]
  72. J Virol. 2009 Dec;83(23):12378-87 [PMID: 19759144]

MeSH Term

Antiviral Agents
Coinfection
Gene Expression Profiling
Solanum lycopersicum
Plant Diseases
Potexvirus
RNA

Chemicals

Antiviral Agents
RNA

Word Cloud

Created with Highcharts 10.0.0strainsinfectionsPepMVtomatomixedtranscriptomictimesvirustwoplantsearlymosaicpotexvirusantagonisticinteractionisolatesisolateaccumulationanalysessinglyshowedalterationsinfectionhostdifferentiallysinglepostinfectionPepMV-EUexpressiongenesAGO2aantiviralPepinosingle-strandedsspositive-sense+RNAaffectscropsworldwidedescribedplantaEUrepressesCH2Reportsdescribingresponsesscantcarriedmixed-infectedComparisontranscriptomesinfecteddeeperoccurredalsoviralmodulatedtranscriptomeMixedcausedsimilarsumclearlydifferinglaternexttestedhypothesiseitherderegulatesgenegetsrepressedseemedcaseAGO1aDCL2dDCL2binvolvedsilencingpathwayupregulatedPepMV-CH2patternvalidatedreversetranscription-quantitativePCRNicotianabenthamianaUsingN benthamianaago2mutantlineAGO2indeedplaysimportantroledefenceprimarydeterminantoutcomeTranscriptomeunveileddifferentialregulationAGODCLpepinoRNAi

Similar Articles

Cited By (6)