Zinc Titanium Nitride Semiconductor toward Durable Photoelectrochemical Applications.

Ann L Greenaway, Sijia Ke, Theodore Culman, Kevin R Talley, John S Mangum, Karen N Heinselman, Ryan S Kingsbury, Rebecca W Smaha, Melissa K Gish, Elisa M Miller, Kristin A Persson, John M Gregoire, Sage R Bauers, Jeffrey B Neaton, Adele C Tamboli, Andriy Zakutayev
Author Information
  1. Ann L Greenaway: Materials Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States. ORCID
  2. Sijia Ke: Materials and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  3. Theodore Culman: Materials Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
  4. Kevin R Talley: Materials Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States. ORCID
  5. John S Mangum: Materials Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States. ORCID
  6. Karen N Heinselman: Materials Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States. ORCID
  7. Ryan S Kingsbury: Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  8. Rebecca W Smaha: Materials Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States. ORCID
  9. Melissa K Gish: Materials Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States. ORCID
  10. Elisa M Miller: Materials Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States. ORCID
  11. Kristin A Persson: Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720, United States. ORCID
  12. John M Gregoire: Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States. ORCID
  13. Sage R Bauers: Materials Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States. ORCID
  14. Jeffrey B Neaton: Materials and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  15. Adele C Tamboli: Materials Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
  16. Andriy Zakutayev: Materials Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States. ORCID

Abstract

Photoelectrochemical fuel generation is a promising route to sustainable liquid fuels produced from water and captured carbon dioxide with sunlight as the energy input. Development of these technologies requires photoelectrode materials that are both photocatalytically active and operationally stable in harsh oxidative and/or reductive electrochemical environments. Such photocatalysts can be discovered based on co-design principles, wherein design for stability is based on the propensity for the photocatalyst to self-passivate under operating conditions and design for photoactivity is based on the ability to integrate the photocatalyst with established semiconductor substrates. Here, we report on the synthesis and characterization of Zinc Titanium Nitride (ZnTiN) that follows these design rules by having a wurtzite-derived crystal structure and showing self-passivating surface oxides created by electrochemical polarization. The sputtered ZnTiN thin films have optical absorption onsets below 2 eV and n-type electrical conduction of 3 S/cm. The band gap of this material is reduced from the 3.36 eV theoretical value by cation-site disorder, and the impact of cation antisites on the band structure of ZnTiN is explored using density functional theory. Under electrochemical polarization, the ZnTiN surfaces have TiO- or ZnO-like character, consistent with Materials Project Pourbaix calculations predicting the formation of stable solid phases under near-neutral pH. These results show that ZnTiN is a promising candidate for photoelectrochemical liquid fuel generation and demonstrate a new materials design approach to other photoelectrodes with self-passivating native operational surface chemistry.

References

  1. Nat Commun. 2016 Jun 21;7:11962 [PMID: 27325228]
  2. Adv Mater. 2014 Jan 15;26(2):311-5 [PMID: 24403116]
  3. Chemistry. 2015 Jun 26;21(27):9624-8 [PMID: 26032659]
  4. Science. 2014 May 30;344(6187):1005-9 [PMID: 24876492]
  5. Nat Commun. 2021 Jan 25;12(1):579 [PMID: 33495480]
  6. Nat Commun. 2019 Jan 25;10(1):443 [PMID: 30683857]
  7. J Phys Condens Matter. 2020 May 04;32(40):405504 [PMID: 32364135]
  8. Sci Data. 2018 Apr 03;5:180053 [PMID: 29611842]
  9. ACS Appl Mater Interfaces. 2014 Dec 24;6(24):22830-7 [PMID: 25469622]
  10. ACS Appl Mater Interfaces. 2016 Apr 6;8(13):8445-51 [PMID: 27003726]
  11. Adv Mater. 2019 Mar;31(11):e1807406 [PMID: 30672031]
  12. Nat Mater. 2019 Jul;18(7):732-739 [PMID: 31209391]
  13. Patterns (N Y). 2021 Nov 11;2(12):100373 [PMID: 34950901]
  14. J Am Chem Soc. 2020 May 6;142(18):8421-8430 [PMID: 32279492]
  15. J Am Chem Soc. 2018 Mar 28;140(12):4293-4301 [PMID: 29494134]
  16. Science. 2002 Apr 12;296(5566):280-4 [PMID: 11951028]
  17. Chemistry. 2018 Sep 18;24(52):13963-13970 [PMID: 30044518]
  18. J Chem Phys. 2006 Dec 14;125(22):224106 [PMID: 17176133]
  19. Chem Soc Rev. 2013 Mar 21;42(6):2321-37 [PMID: 23092995]
  20. J Chem Phys. 2019 Oct 7;151(13):130902 [PMID: 31594326]
  21. Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):14829-14834 [PMID: 31270238]
  22. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 [PMID: 9984901]
  23. Phys Chem Chem Phys. 2016 Apr 14;18(14):9349-52 [PMID: 26997488]
  24. Nat Mater. 2021 Aug;20(8):1130-1135 [PMID: 33820963]
  25. Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 [PMID: 9976227]
  26. Nat Commun. 2013;4:2195 [PMID: 23893238]
  27. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 [PMID: 10062328]
  28. ACS Comb Sci. 2019 Jul 8;21(7):537-547 [PMID: 31121098]
  29. J Phys Condens Matter. 2021 Jul 08;33(35): [PMID: 33887709]

Word Cloud

Created with Highcharts 10.0.0ZnTiNdesignelectrochemicalbasedPhotoelectrochemicalfuelgenerationpromisingliquidmaterialsstablephotocatalyststructureself-passivatingsurfacepolarizationeV3bandroutesustainablefuelsproducedwatercapturedcarbondioxidesunlightenergyinputDevelopmenttechnologiesrequiresphotoelectrodephotocatalyticallyactiveoperationallyharshoxidativeand/orreductiveenvironmentsphotocatalystscandiscoveredco-designprincipleswhereinstabilitypropensityself-passivateoperatingconditionsphotoactivityabilityintegrateestablishedsemiconductorsubstratesreportsynthesischaracterizationzinctitaniumnitridefollowsruleswurtzite-derivedcrystalshowingoxidescreatedsputteredthinfilmsopticalabsorptiononsets2n-typeelectricalconductionS/cmgapmaterialreduced36theoreticalvaluecation-sitedisorderimpactcationantisitesexploredusingdensityfunctionaltheorysurfacesTiO-ZnO-likecharacterconsistentMaterialsProjectPourbaixcalculationspredictingformationsolidphasesnear-neutralpHresultsshowcandidatephotoelectrochemicaldemonstratenewapproachphotoelectrodesnativeoperationalchemistryZincTitaniumNitrideSemiconductortowardDurableApplications

Similar Articles

Cited By (6)