Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement.

Spencer Bowles, Jordan Hickman, Xiaoyu Peng, W Ryan Williamson, Rongchen Huang, Kayden Washington, Dane Donegan, Cristin G Welle
Author Information
  1. Spencer Bowles: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA.
  2. Jordan Hickman: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
  3. Xiaoyu Peng: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA.
  4. W Ryan Williamson: IDEA Core, University of Colorado School of Medicine, Aurora, CO 80045, USA.
  5. Rongchen Huang: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA.
  6. Kayden Washington: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA.
  7. Dane Donegan: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA.
  8. Cristin G Welle: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA. Electronic address: cristin.welle@cuanschutz.edu.

Abstract

Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS influences central nervous system circuitry is not well described, limiting therapeutic optimization. VNS leads to widespread brain activation, but the effects on behavior are remarkably specific, indicating plasticity unique to behaviorally engaged neural circuits. To understand how VNS can lead to specific circuit modulation, we leveraged genetic tools including optogenetics and in vivo calcium imaging in mice learning a skilled reach task. We find that VNS enhances skilled motor learning in healthy animals via a cholinergic reinforcement mechanism, producing a rapid consolidation of an expert reach trajectory. In primary motor cortex (M1), VNS drives precise temporal modulation of neurons that respond to behavioral outcome. This suggests that VNS may accelerate motor refinement in M1 via cholinergic signaling, opening new avenues for optimizing VNS to target specific disease-relevant circuitry.

Keywords

References

  1. Stroke. 2018 Nov;49(11):2789-2792 [PMID: 30355189]
  2. Lancet. 2021 Apr 24;397(10284):1545-1553 [PMID: 33894832]
  3. Neuron. 2015 May 6;86(3):800-12 [PMID: 25892304]
  4. Nature. 2011 Feb 3;470(7332):101-4 [PMID: 21228773]
  5. Exp Neurol. 1966 Sep;16(1):36-49 [PMID: 5923482]
  6. Neuron. 2012 Aug 23;75(4):556-71 [PMID: 22920249]
  7. Neurol Res. 2013 Apr;35(3):263-76 [PMID: 23485054]
  8. Science. 2018 Mar 2;359(6379):1024-1029 [PMID: 29496877]
  9. J Neurophysiol. 2018 Oct 1;120(4):1796-1806 [PMID: 29995601]
  10. Behav Neurosci. 2019 Feb;133(1):121-134 [PMID: 30688488]
  11. Elife. 2018 Mar 13;7: [PMID: 29533186]
  12. Curr Opin Neurobiol. 2020 Feb;60:145-154 [PMID: 31877493]
  13. Nat Rev Neurosci. 2012 Sep;13(9):658-64 [PMID: 22903222]
  14. J Neurosci. 2022 May 18;42(20):4202-4214 [PMID: 35437276]
  15. Acta Physiol Hung. 1983;61(3):147-54 [PMID: 6650184]
  16. Epilepsia. 2002 Dec;43(12):1509-14 [PMID: 12460253]
  17. Curr Biol. 2021 May 24;31(10):2088-2098.e3 [PMID: 33740425]
  18. Neuron. 2019 Sep 25;103(6):1164-1177.e6 [PMID: 31351757]
  19. Nat Neurosci. 2018 Oct;21(10):1431-1441 [PMID: 30224805]
  20. J Neural Eng. 2017 Aug;14(4):046022 [PMID: 28361793]
  21. Brain Stimul. 2016 Jan-Feb;9(1):117-23 [PMID: 26460200]
  22. Exp Neurol. 2017 Mar;289:21-30 [PMID: 27988257]
  23. J Stroke Cerebrovasc Dis. 2018 Jul;27(7):1998-2005 [PMID: 29580658]
  24. Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15210-15215 [PMID: 31182595]
  25. J Neurosci. 2014 Jul 9;34(28):9261-7 [PMID: 25009259]
  26. J Neurotrauma. 2016 May 1;33(9):871-9 [PMID: 26058501]
  27. Brain Stimul. 2017 Nov - Dec;10(6):1045-1054 [PMID: 28918943]
  28. Int J Dev Neurosci. 2009 Aug;27(5):415-21 [PMID: 19446627]
  29. Neurosci Lett. 2013 Mar 1;536:14-8 [PMID: 23333601]
  30. Neural Plast. 2020 Aug 1;2020:8841752 [PMID: 32802039]
  31. Neuron. 2020 Sep 9;107(5):954-971.e9 [PMID: 32589878]
  32. Cereb Cortex. 2010 Nov;20(11):2739-48 [PMID: 20181623]
  33. Elife. 2014 Dec 15;3:e03697 [PMID: 25497835]
  34. Nat Commun. 2017 Jun 09;8:15834 [PMID: 28598433]
  35. Nat Neurosci. 2015 Aug;18(8):1109-15 [PMID: 26098758]
  36. Nat Methods. 2011 Sep;8(9):745-52 [PMID: 21985008]
  37. eNeuro. 2021 Jun 28;8(3): [PMID: 34088737]
  38. J Neurosci. 2019 Jun 12;39(24):4684-4693 [PMID: 30948479]
  39. Neuron. 2008 Jul 10;59(1):138-49 [PMID: 18614035]
  40. J Neural Eng. 2020 Apr 09;17(2):026022 [PMID: 32108590]
  41. Cell. 2015 Aug 27;162(5):1155-68 [PMID: 26317475]
  42. Trends Neurosci. 2016 Aug;39(8):512-526 [PMID: 27378546]
  43. J Neurosci. 2009 May 6;29(18):5992-6000 [PMID: 19420265]
  44. Neuron. 2018 Feb 7;97(3):670-683.e6 [PMID: 29397273]
  45. Biol Psychiatry. 2005 Sep 1;58(5):347-54 [PMID: 16139580]
  46. Nat Neurosci. 2014 Feb;17(2):312-21 [PMID: 24413700]
  47. Nature. 2014 Jun 12;510(7504):263-7 [PMID: 24805237]
  48. Neuron. 2019 Apr 3;102(1):202-216.e7 [PMID: 30792151]
  49. Neuron. 2016 Jun 1;90(5):1057-70 [PMID: 27161525]
  50. Nat Commun. 2020 Jul 16;11(1):3555 [PMID: 32678082]
  51. Front Syst Neurosci. 2014 Sep 18;8:172 [PMID: 25278848]
  52. Elife. 2015 Dec 02;4:e10774 [PMID: 26633811]
  53. Neuroscience. 1999;93(3):817-29 [PMID: 10473248]
  54. Brain Stimul. 2020 Nov - Dec;13(6):1617-1630 [PMID: 32956868]
  55. Science. 2008 May 2;320(5876):630-4 [PMID: 18451295]
  56. Nat Commun. 2016 Nov 08;7:13289 [PMID: 27824036]
  57. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5348-51 [PMID: 24110944]
  58. Neurosci Lett. 2005 May 13;379(3):174-9 [PMID: 15843058]
  59. J Pharmacol Exp Ther. 1993 Dec;267(3):1484-92 [PMID: 8263810]
  60. J Neurosci. 2005 Nov 30;25(48):11194-200 [PMID: 16319319]
  61. Epilepsia. 1998 Jul;39(7):709-14 [PMID: 9670898]
  62. J Neurocytol. 2004 May;33(3):265-76 [PMID: 15475682]
  63. J Neurosci. 2015 Mar 4;35(9):4015-24 [PMID: 25740529]
  64. Brain Stimul. 2016 Mar-Apr;9(2):174-81 [PMID: 26822960]
  65. Neuron. 2011 Apr 14;70(1):121-31 [PMID: 21482361]
  66. Pharmacol Biochem Behav. 1990 Nov;37(3):405-10 [PMID: 2087481]
  67. Cell Metab. 2011 Feb 2;13(2):195-204 [PMID: 21284986]
  68. Neuron. 2022 Jul 20;110(14):2334-2350.e8 [PMID: 35584693]
  69. Neurology. 1995 Feb;45(2):224-30 [PMID: 7854516]
  70. Elife. 2016 Sep 19;5: [PMID: 27642784]
  71. Cell Rep. 2014 Dec 11;9(5):1654-1660 [PMID: 25482555]
  72. Nature. 2012 Jul 5;487(7405):51-6 [PMID: 22722855]
  73. Brain. 1986 Oct;109 ( Pt 5):805-43 [PMID: 3779371]
  74. Curr Biol. 2019 Nov 4;29(21):3551-3562.e7 [PMID: 31630947]
  75. Neurosci Biobehav Rev. 2005 May;29(3):493-500 [PMID: 15820552]
  76. J Neurosci. 2011 Feb 16;31(7):2481-7 [PMID: 21325515]
  77. Neuron. 2015 Jun 17;86(6):1385-92 [PMID: 26051420]
  78. Nat Neurosci. 2017 Aug;20(8):1133-1141 [PMID: 28671694]
  79. Cell. 2018 Oct 18;175(3):887-888 [PMID: 30340046]
  80. Neuron. 2016 Nov 23;92(4):705-721 [PMID: 27883902]
  81. J Neural Eng. 2021 Aug 31;18(4): [PMID: 34407518]
  82. Epilepsia. 1994 May-Jun;35(3):616-26 [PMID: 8026408]
  83. J Neurosci Methods. 2017 Nov 1;291:83-94 [PMID: 28782629]
  84. Am J Physiol Heart Circ Physiol. 2017 Aug 1;313(2):H354-H367 [PMID: 28476920]
  85. Curr Opin Neurobiol. 2019 Oct;58:229-238 [PMID: 31670073]
  86. PLoS One. 2009 Jul 07;4(7):e6099 [PMID: 19584920]
  87. Sci Rep. 2017 Sep 20;7(1):11960 [PMID: 28931943]
  88. J Neurophysiol. 2015 Mar 1;113(5):1585-97 [PMID: 25505106]
  89. Curr Opin Neurobiol. 2003 Dec;13(6):685-90 [PMID: 14662369]
  90. Annu Rev Neurosci. 2008;31:195-218 [PMID: 18558853]
  91. Elife. 2018 Feb 22;7: [PMID: 29469809]
  92. Neuroscience. 2005;131(1):1-11 [PMID: 15680687]
  93. Neuron. 2017 Jan 18;93(2):451-463 [PMID: 28103483]
  94. Annu Rev Neurosci. 2000;23:393-415 [PMID: 10845069]
  95. J Neurophysiol. 2019 Aug 1;122(2):797-808 [PMID: 31242063]
  96. Cell Rep. 2017 Oct 24;21(4):1102-1115 [PMID: 29069591]
  97. J Neurophysiol. 2002 Jan;87(1):166-71 [PMID: 11784739]
  98. Neuron. 2002 Oct 10;36(2):285-98 [PMID: 12383782]
  99. Neuron. 2003 Jun 5;38(5):819-29 [PMID: 12797965]
  100. J Clin Neurophysiol. 1994 Jul;11(4):382-96 [PMID: 7962487]
  101. Exp Neurol. 2019 Oct;320:112975 [PMID: 31181199]
  102. Nat Rev Neurosci. 2011 Oct 27;12(12):739-51 [PMID: 22033537]
  103. Elife. 2021 Apr 06;10: [PMID: 33821789]
  104. Neurosci Lett. 2019 Sep 14;709:134371 [PMID: 31283966]
  105. J Vis Exp. 2008 Aug 08;(18): [PMID: 19066506]
  106. Brain Commun. 2021 Mar 14;3(2):fcab039 [PMID: 33928247]
  107. Curr Biol. 2015 Nov 2;25(21):R1051-R1056 [PMID: 26528750]
  108. Neuron. 2017 Feb 22;93(4):955-970.e5 [PMID: 28190641]
  109. Neural Netw. 1999 Oct;12(7-8):961-974 [PMID: 12662639]
  110. Cereb Cortex. 2012 Oct;22(10):2365-74 [PMID: 22079923]
  111. Curr Biol. 2019 Jan 7;29(1):134-142.e3 [PMID: 30581022]
  112. Nat Commun. 2019 Dec 19;10(1):5782 [PMID: 31857587]
  113. J Neurophysiol. 2012 Jul;108(2):578-94 [PMID: 22514286]
  114. Annu Rev Neurosci. 2017 Jul 25;40:479-498 [PMID: 28489490]
  115. J Neurosci. 2017 Mar 8;37(10):2673-2685 [PMID: 28143961]
  116. Cell Rep. 2017 Feb 14;18(7):1817-1830 [PMID: 28199851]

Grants

  1. P30 NS048154/NINDS NIH HHS
  2. R01 NS115975/NINDS NIH HHS
  3. R01 NS123665/NINDS NIH HHS
  4. T32 NS099042/NINDS NIH HHS

MeSH Term

Animals
Brain
Cholinergic Agents
Mice
Nervous System Diseases
Neuronal Plasticity
Vagus Nerve Stimulation

Chemicals

Cholinergic Agents

Word Cloud

Created with Highcharts 10.0.0VNSmotorlearningcholinergicnervestimulationspecificmodulationreinforcementVagusneuromodulationmechanismcircuitryplasticitycircuitskilledreachviacortexM1drivesoutcometherapybroadexpandingsetneurologicconditionsHoweverinfluencescentralnervoussystemwelldescribedlimitingtherapeuticoptimizationleadswidespreadbrainactivationeffectsbehaviorremarkablyindicatinguniquebehaviorallyengagedneuralcircuitsunderstandcanleadleveragedgenetictoolsincludingoptogeneticsin vivocalciumimagingmicetaskfindenhanceshealthyanimalsproducingrapidconsolidationexperttrajectoryprimaryprecisetemporalneuronsrespondbehavioralsuggestsmayacceleraterefinementsignalingopeningnewavenuesoptimizingtargetdisease-relevantselectivebasalforebrainvagus

Similar Articles

Cited By