A Conceptual Approach to Partitioning a Vertical Profile of Phytoplankton Biomass Into Contributions From Two Communities.

Robert J W Brewin, Giorgio Dall'Olmo, John Gittings, Xuerong Sun, Priscila K Lange, Dionysios E Raitsos, Heather A Bouman, Ibrahim Hoteit, Jim Aiken, Shubha Sathyendranath
Author Information
  1. Robert J W Brewin: Centre for Geography and Environmental Science College of Life and Environmental Sciences University of Exeter Cornwall UK. ORCID
  2. Giorgio Dall'Olmo: Plymouth Marine Laboratory Plymouth UK. ORCID
  3. John Gittings: Program of Earth Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia. ORCID
  4. Xuerong Sun: Centre for Geography and Environmental Science College of Life and Environmental Sciences University of Exeter Cornwall UK. ORCID
  5. Priscila K Lange: Departamento de Meteorologia Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro Brazil. ORCID
  6. Dionysios E Raitsos: Department of Biology National and Kapodistrian University of Athens Athens Greece. ORCID
  7. Heather A Bouman: Department of Earth Sciences University of Oxford Oxford UK. ORCID
  8. Ibrahim Hoteit: Program of Earth Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia. ORCID
  9. Jim Aiken: Plymouth Marine Laboratory Plymouth UK.
  10. Shubha Sathyendranath: Plymouth Marine Laboratory Plymouth UK. ORCID

Abstract

We describe an approach to partition a vertical profile of chlorophyll-a concentration into contributions from two communities of phytoplankton: one (community 1) that resides principally in the turbulent mixed-layer of the upper ocean and is observable through satellite visible radiometry; the other (community 2) residing below the mixed-layer, in a stably stratified environment, hidden from the eyes of the satellite. The approach is tuned to a time-series of profiles from a Biogeochemical-Argo float in the northern Red Sea, selected as its location transitions from a deep mixed layer in winter (characteristic of vertically well-mixed systems) to a shallow mixed layer in the summer with a deep chlorophyll-a maximum (characteristic of vertically stratified systems). The approach is extended to reproduce profiles of particle backscattering, by deriving the chlorophyll-specific backscattering coefficients of the two communities and a background coefficient assumed to be dominated by non-algal particles in the region. Analysis of the float data reveals contrasting phenology of the two communities, with community 1 blooming in winter and 2 in summer, community 1 negatively correlated with epipelagic stratification, and 2 positively correlated. We observe a dynamic chlorophyll-specific backscattering coefficient for community 1 (stable for community 2), positively correlated with light in the mixed-layer, suggesting seasonal changes in photoacclimation and/or taxonomic composition within community 1. The approach has the potential for monitoring vertical changes in epipelagic biogeography and for combining satellite and ocean robotic data to yield a three-dimensional view of phytoplankton distribution.

Keywords

References

  1. Nat Commun. 2018 Dec 21;9(1):5439 [PMID: 30575718]
  2. Science. 1988 Sep 23;241(4873):1613-20 [PMID: 17820892]
  3. Nature. 2006 Dec 7;444(7120):695-6 [PMID: 17151650]
  4. Sci Rep. 2018 Feb 2;8(1):2240 [PMID: 29396537]
  5. Sci Rep. 2017 Aug 24;7(1):9338 [PMID: 28839286]
  6. Nature. 2010 Jul 29;466(7306):569, 571 [PMID: 20671698]
  7. Ann Rev Mar Sci. 2020 Jan 3;12:23-48 [PMID: 31433959]
  8. Appl Opt. 2020 Apr 1;59(10):C100-C114 [PMID: 32400614]
  9. Curr Biol. 2017 Jan 9;27(1):113-119 [PMID: 28017608]
  10. Biochim Biophys Acta. 1973 Oct 19;325(1):114-9 [PMID: 4770722]
  11. FEMS Microbiol Ecol. 2016 Mar;92(3): [PMID: 26738552]
  12. Opt Express. 2020 Nov 9;28(23):34147-34166 [PMID: 33182891]
  13. Global Biogeochem Cycles. 2021 Apr;35(4):e2020GB006759 [PMID: 35860208]
  14. FEMS Microbiol Lett. 2014 Jul;356(1):118-26 [PMID: 24888561]
  15. J Geophys Res Oceans. 2022 Apr;127(4):e2021JC018195 [PMID: 35859661]
  16. Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190351 [PMID: 32862808]
  17. Opt Express. 2012 Jul 30;20(16):17632-52 [PMID: 23038316]
  18. Appl Opt. 2005 Mar 20;44(9):1735-47 [PMID: 15813278]
  19. Science. 2016 Jan 29;351(6272):482-4 [PMID: 26823423]
  20. Sci Rep. 2019 Jan 24;9(1):674 [PMID: 30679755]
  21. PLoS One. 2013 Jun 05;8(6):e64909 [PMID: 23755161]
  22. PeerJ. 2020 Feb 24;8:e8612 [PMID: 32140305]
  23. Ann Rev Mar Sci. 2015;7:207-39 [PMID: 25251268]
  24. Sci Rep. 2017 Jul 26;7(1):6611 [PMID: 28747798]

Word Cloud

Created with Highcharts 10.0.0community1approachsatellite2verticaltwocommunitiesmixed-layeroceanbackscatteringcorrelatedchlorophyll-astratifiedprofilesfloatdeepmixedlayerwintercharacteristicverticallysystemssummerchlorophyll-specificcoefficientdataepipelagicpositivelychangesphytoplanktondescribepartitionprofileconcentrationcontributionsphytoplankton:oneresidesprincipallyturbulentupperobservablevisibleradiometryresidingstablyenvironmenthiddeneyestunedtime-seriesBiogeochemical-ArgonorthernRedSeaselectedlocationtransitionswell-mixedshallowmaximumextendedreproduceparticlederivingcoefficientsbackgroundassumeddominatednon-algalparticlesregionAnalysisrevealscontrastingphenologybloomingnegativelystratificationobservedynamicstablelightsuggestingseasonalphotoacclimationand/ortaxonomiccompositionwithinpotentialmonitoringbiogeographycombiningroboticyieldthree-dimensionalviewdistributionConceptualApproachPartitioningVerticalProfilePhytoplanktonBiomassContributionsTwoCommunitiesBGC‐Argostructurerobotics

Similar Articles

Cited By