Modular mixing of benzene-1,3,5-tricarboxamide supramolecular hydrogelators allows tunable biomimetic hydrogels for control of cell aggregation in 3D.

Shahzad Hafeez, Fiona R Passanha, Antonio J Feliciano, Floor A A Ruiter, Afonso Malheiro, René P M Lafleur, Nicholas M Matsumoto, Clemens van Blitterswijk, Lorenzo Moroni, Paul Wieringa, Vanessa L S LaPointe, Matthew B Baker
Author Information
  1. Shahzad Hafeez: Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. m.baker@maastrichtuniversity.nl. ORCID
  2. Fiona R Passanha: Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
  3. Antonio J Feliciano: Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. m.baker@maastrichtuniversity.nl.
  4. Floor A A Ruiter: Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. m.baker@maastrichtuniversity.nl.
  5. Afonso Malheiro: Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. m.baker@maastrichtuniversity.nl.
  6. René P M Lafleur: Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. ORCID
  7. Nicholas M Matsumoto: Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
  8. Clemens van Blitterswijk: Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. m.baker@maastrichtuniversity.nl.
  9. Lorenzo Moroni: Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. m.baker@maastrichtuniversity.nl. ORCID
  10. Paul Wieringa: Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. m.baker@maastrichtuniversity.nl. ORCID
  11. Vanessa L S LaPointe: Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. ORCID
  12. Matthew B Baker: Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. m.baker@maastrichtuniversity.nl. ORCID

Abstract

Few synthetic hydrogels can mimic both the viscoelasticity and supramolecular fibrous structure found in the naturally occurring extracellular matrix (ECM). Furthermore, the ability to control the viscoelasticity of fibrous supramolecular hydrogel networks to influence cell culture remains a challenge. Here, we show that modular mixing of supramolecular architectures with slow and fast exchange dynamics can provide a suitable environment for multiple cell types and influence cellular aggregation. We employed modular mixing of two synthetic benzene-1,3,5-tricarboxamide (BTA) architectures: a small molecule water-soluble BTA with slow exchange dynamics and a telechelic polymeric BTA-PEG-BTA with fast exchange dynamics. Copolymerisation of these two supramolecular architectures was observed, and all tested formulations formed stable hydrogels in water and cell culture media. We found that rational tuning of mechanical and viscoelastic properties is possible by mixing BTA with BTA-PEG-BTA. These hydrogels showed high viability for both chondrocyte (ATDC5) and human dermal fibroblast (HDF) encapsulation (>80%) and supported neuronal outgrowth (PC12 and dorsal root ganglion, DRG). Furthermore, ATDC5s and human mesenchymal stem cells (hMSCs) were able to form spheroids within these viscoelastic hydrogels, with control over cell aggregation modulated by the dynamic properties of the material. Overall, this study shows that modular mixing of supramolecular architectures enables tunable fibrous hydrogels, creating a biomimetic environment for cell encapsulation. These materials are suitable for the formation and culture of spheroids in 3D, critical for upscaling tissue engineering approaches towards cell densities relevant for physiological tissues.

References

  1. J Am Chem Soc. 2020 Sep 9;142(36):15371-15385 [PMID: 32808783]
  2. Nat Commun. 2015 Feb 19;6:6364 [PMID: 25695512]
  3. Adv Sci (Weinh). 2019 Jan 11;6(4):1801716 [PMID: 30828535]
  4. J Am Chem Soc. 2003 Jun 18;125(24):7146-7 [PMID: 12797766]
  5. Biomaterials. 2010 Nov;31(32):8454-64 [PMID: 20684983]
  6. Nat Mater. 2017 Dec;16(12):1233-1242 [PMID: 29115291]
  7. Nat Commun. 2021 Feb 2;12(1):753 [PMID: 33531489]
  8. Biomaterials. 2018 Feb;154:213-222 [PMID: 29132046]
  9. J Am Chem Soc. 2019 Sep 4;141(35):13877-13886 [PMID: 31387351]
  10. Biomacromolecules. 2018 Apr 9;19(4):1091-1099 [PMID: 29528623]
  11. Science. 2005 Nov 18;310(5751):1139-43 [PMID: 16293750]
  12. Biomaterials. 1999 Jan;20(1):45-53 [PMID: 9916770]
  13. Adv Mater. 2016 Jun;28(21):4032-9 [PMID: 27000493]
  14. J Am Chem Soc. 2010 May 5;132(17):6041-6 [PMID: 20377229]
  15. Nat Commun. 2021 Jun 10;12(1):3514 [PMID: 34112772]
  16. Chempluschem. 2017 Mar;82(3):383-389 [PMID: 31962021]
  17. PLoS One. 2011 Jan 05;6(1):e15978 [PMID: 21246050]
  18. Adv Mater. 2021 Sep;33(37):e2008111 [PMID: 34337776]
  19. Biomaterials. 2019 Dec;224:119466 [PMID: 31542516]
  20. Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):E2686-E2695 [PMID: 29507238]
  21. Adv Mater. 2012 May 22;24(20):2703-9 [PMID: 22528786]
  22. J Mater Chem B. 2014 May 7;2(17):2483-2493 [PMID: 32261418]
  23. Nature. 2020 Aug;584(7822):535-546 [PMID: 32848221]
  24. Gels. 2018 Nov 21;4(4): [PMID: 30674861]
  25. Chem Soc Rev. 2017 Oct 30;46(21):6621-6637 [PMID: 28991958]
  26. ACS Appl Mater Interfaces. 2019 Feb 13;11(6):5695-5700 [PMID: 30707553]
  27. Nat Rev Mater. 2016;1: [PMID: 29214058]
  28. Bioorg Med Chem. 2021 Sep 15;46:116345 [PMID: 34416510]
  29. Nano Lett. 2021 Apr 14;21(7):2719-2729 [PMID: 33492960]
  30. Adv Drug Deliv Rev. 2016 Feb 1;97:4-27 [PMID: 26562801]
  31. Nat Commun. 2018 Jan 31;9(1):449 [PMID: 29386514]
  32. Biomacromolecules. 2020 Oct 12;21(10):4105-4115 [PMID: 32991162]
  33. J Tissue Eng Regen Med. 2022 Jan;16(1):14-25 [PMID: 34655456]
  34. Biomaterials. 2019 Dec;223:119430 [PMID: 31493696]
  35. Chem Commun (Camb). 2017 Feb 14;53(14):2279-2282 [PMID: 28154855]
  36. J Cell Sci. 2008 Feb 1;121(Pt 3):255-64 [PMID: 18216330]
  37. Assay Drug Dev Technol. 2014 May;12(4):207-18 [PMID: 24831787]
  38. Nat Mater. 2016 Dec;15(12):1297-1306 [PMID: 27525568]
  39. Biomaterials. 2017 Nov;145:23-32 [PMID: 28843064]
  40. Cytometry A. 2017 Aug;91(8):810-814 [PMID: 28727252]
  41. Adv Mater. 2014 Feb 12;26(6):865-72 [PMID: 24127293]
  42. Nat Mater. 2015 Dec;14(12):1269-77 [PMID: 26366848]
  43. Nat Mater. 2016 Mar;15(3):326-34 [PMID: 26618884]
  44. Acta Biomater. 2021 Apr 1;124:1-14 [PMID: 33508507]
  45. Cell. 2006 Aug 25;126(4):677-89 [PMID: 16923388]
  46. Adv Mater. 2014 Mar 19;26(11):1642-59 [PMID: 24496667]
  47. Adv Mater. 2017 May;29(19): [PMID: 28295624]
  48. Nat Mater. 2005 Jul;4(7):568-74 [PMID: 15965478]
  49. Cell Stem Cell. 2016 Feb 4;18(2):166-7 [PMID: 26849301]
  50. Nat Mater. 2019 Aug;18(8):883-891 [PMID: 30886401]
  51. Nat Mater. 2016 Jan;15(1):13-26 [PMID: 26681596]
  52. Science. 2012 Feb 17;335(6070):813-7 [PMID: 22344437]
  53. Nat Mater. 2014 Jun;13(6):547-57 [PMID: 24845994]
  54. Biomaterials. 2020 Oct;257:120230 [PMID: 32736264]
  55. Biomaterials. 2014 Feb;35(6):1857-68 [PMID: 24331708]
  56. Biomaterials. 2020 Sep;254:120127 [PMID: 32480096]
  57. Adv Healthc Mater. 2022 Jan;11(1):e2101576 [PMID: 34614297]
  58. J Cell Sci. 2010 Dec 15;123(Pt 24):4195-200 [PMID: 21123617]
  59. Nat Mater. 2017 Dec;16(12):1243-1251 [PMID: 28967913]
  60. PLoS One. 2013 Oct 23;8(10):e77232 [PMID: 24194875]
  61. J Appl Phys. 2010 Mar 15;107(6):63509 [PMID: 21464912]
  62. Acta Biomater. 2019 Jan 1;83:71-82 [PMID: 30419278]
  63. ACS Cent Sci. 2020 Aug 26;6(8):1401-1411 [PMID: 32875081]

MeSH Term

Benzamides
Benzene
Biomimetics
Humans
Hydrogels
Water

Chemicals

Benzamides
Hydrogels
benzene-1,3,5-tricarboxamide
Water
Benzene

Word Cloud

Created with Highcharts 10.0.0cellhydrogelssupramolecularmixingfibrouscontrolculturemodulararchitecturesexchangedynamicsaggregationBTAsyntheticcanviscoelasticityfoundFurthermoreinfluenceslowfastsuitableenvironmenttwobenzene-135-tricarboxamideBTA-PEG-BTAviscoelasticpropertieshumanencapsulationspheroidstunablebiomimetic3DmimicstructurenaturallyoccurringextracellularmatrixECMabilityhydrogelnetworksremainschallengeshowprovidemultipletypescellularemployedarchitectures:smallmoleculewater-solubletelechelicpolymericCopolymerisationobservedtestedformulationsformedstablewatermediarationaltuningmechanicalpossibleshowedhighviabilitychondrocyteATDC5dermalfibroblastHDF>80%supportedneuronaloutgrowthPC12dorsalrootganglionDRGATDC5smesenchymalstemcellshMSCsableformwithinmodulateddynamicmaterialOverallstudyshowsenablescreatingmaterialsformationcriticalupscalingtissueengineeringapproachestowardsdensitiesrelevantphysiologicaltissuesModularhydrogelatorsallows

Similar Articles

Cited By