Microbiome Heritability and Its Role in Adaptation of Hosts to Novel Resources.

Karen Bisschop, Hylke H Kortenbosch, Timo J B van Eldijk, Cyrus A Mallon, Joana F Salles, Dries Bonte, Rampal S Etienne
Author Information
  1. Karen Bisschop: Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
  2. Hylke H Kortenbosch: Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
  3. Timo J B van Eldijk: Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
  4. Cyrus A Mallon: Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
  5. Joana F Salles: Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
  6. Dries Bonte: Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, Belgium.
  7. Rampal S Etienne: Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.

Abstract

Microbiomes are involved in most vital processes, such as immune response, detoxification, and digestion and are thereby elementary to organismal functioning and ultimately the host's fitness. In turn, the microbiome may be influenced by the host and by the host's environment. To understand microbiome dynamics during the process of adaptation to new resources, we performed an evolutionary experiment with the two-spotted spider mite, . We generated genetically depleted strains of the two-spotted spider mite and reared them on their ancestral host plant and two novel host plants for approximately 12 generations. The use of genetically depleted strains reduced the magnitude of genetic adaptation of the spider mite host to the new resource and, hence, allowed for better detection of signals of adaptation the microbiome. During the course of adaptation, we tested spider mite performance (number of eggs laid and longevity) and characterized the bacterial component of its microbiome (16S rRNA gene sequencing) to determine: (1) whether the bacterial communities were shaped by mite ancestry or plant environment and (2) whether the spider mites' performance and microbiome composition were related. We found that spider mite performance on the novel host plants was clearly correlated with microbiome composition. Because our results show that only little of the total variation in the microbiome can be explained by the properties of the host (spider mite) and the environment (plant species) we studied, we argue that the bacterial community within hosts could be valuable for understanding a species' performance on multiple resources.

Keywords

References

  1. PLoS One. 2012;7(12):e51554 [PMID: 23284712]
  2. Trends Ecol Evol. 2012 Oct;27(10):547-60 [PMID: 22819306]
  3. Science. 2011 Nov 4;334(6056):670-4 [PMID: 22053049]
  4. Genome Med. 2021 Feb 9;13(1):22 [PMID: 33563315]
  5. Curr Biol. 2013 Sep 9;23(17):1713-7 [PMID: 23993843]
  6. Sci Rep. 2015 Nov 13;5:15811 [PMID: 26563507]
  7. Nature. 2012 Jun 13;486(7402):207-14 [PMID: 22699609]
  8. World J Gastroenterol. 2015 Aug 7;21(29):8787-803 [PMID: 26269668]
  9. Microbiome. 2020 Jun 8;8(1):87 [PMID: 32513310]
  10. Nat Rev Microbiol. 2011 Apr;9(4):279-90 [PMID: 21407244]
  11. Nat Commun. 2021 Aug 26;12(1):5141 [PMID: 34446709]
  12. PLoS One. 2016 Dec 14;11(12):e0167726 [PMID: 27973604]
  13. Sci Rep. 2018 Feb 6;8(1):2466 [PMID: 29410456]
  14. Nat Ecol Evol. 2022 Jan;6(1):77-87 [PMID: 34949814]
  15. Ecol Lett. 2013 Apr;16(4):430-7 [PMID: 23294510]
  16. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  17. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  18. FEMS Microbiol Ecol. 2018 Dec 1;94(12): [PMID: 30219893]
  19. Biol Rev Camb Philos Soc. 2018 Nov;93(4):1747-1764 [PMID: 29663622]
  20. Syst Appl Microbiol. 2015 Jul;38(5):330-9 [PMID: 26138047]
  21. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  22. Proc Biol Sci. 2003 Nov 7;270 Suppl 2:S209-12 [PMID: 14667385]
  23. Oecologia. 2016 Jan;180(1):161-7 [PMID: 26369779]
  24. J Evol Biol. 2017 Nov;30(11):1966-1977 [PMID: 28556282]
  25. Nat Rev Microbiol. 2013 Apr;11(4):227-38 [PMID: 23435359]
  26. Genetics. 1996 Nov;144(3):1063-73 [PMID: 8913750]
  27. Exp Appl Acarol. 2003;29(3-4):253-64 [PMID: 14635812]
  28. Curr Biol. 2019 Feb 4;29(3):R78-R80 [PMID: 30721677]
  29. Heredity (Edinb). 2002 Mar;88(3):190-6 [PMID: 11920120]
  30. Mol Ecol. 2012 Oct;21(20):5124-37 [PMID: 22978555]
  31. Evolution. 2005 Feb;59(2):317-23 [PMID: 15807418]
  32. Exp Appl Acarol. 2007;42(2):75-85 [PMID: 17554631]
  33. Int J Mol Sci. 2017 Jan 18;18(1): [PMID: 28106771]
  34. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 [PMID: 16820507]
  35. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12795-800 [PMID: 16120675]
  36. Nature. 2014 Jan 23;505(7484):559-63 [PMID: 24336217]
  37. Appl Environ Microbiol. 2004 Jan;70(1):293-300 [PMID: 14711655]
  38. Heredity (Edinb). 2015 Mar;114(3):327-32 [PMID: 25407077]
  39. Heredity (Edinb). 2003 Sep;91(3):208-16 [PMID: 12939620]
  40. Appl Environ Microbiol. 2003 Aug;69(8):4403-7 [PMID: 12902222]
  41. J Evol Biol. 2011 Dec;24(12):2653-62 [PMID: 21955226]
  42. Insect Mol Biol. 2018 Jun;27(3):333-351 [PMID: 29377385]
  43. J Appl Stat. 2019 Jun 15;47(13-15):2312-2327 [PMID: 35707424]
  44. PLoS Biol. 2015 Dec 04;13(12):e1002311 [PMID: 26636661]
  45. Front Physiol. 2018 Dec 20;9:1836 [PMID: 30618841]
  46. FEMS Microbiol Rev. 2008 Aug;32(5):723-35 [PMID: 18549407]
  47. Trends Microbiol. 2008 Mar;16(3):107-14 [PMID: 18280160]
  48. Trends Microbiol. 2019 Jun;27(6):480-488 [PMID: 30857919]
  49. ISME J. 2018 May;12(5):1375-1388 [PMID: 29445132]
  50. PLoS One. 2014 Apr 14;9(4):e95027 [PMID: 24733403]
  51. FEMS Microbiol Ecol. 2018 Apr 1;94(4): [PMID: 29390142]
  52. Front Microbiol. 2016 Jul 28;7:1165 [PMID: 27516760]
  53. Oecologia. 2019 Jan;189(1):111-122 [PMID: 30511092]
  54. Trends Plant Sci. 2012 Aug;17(8):478-86 [PMID: 22564542]
  55. Proc Biol Sci. 2019 Jun 26;286(1905):20190738 [PMID: 31238842]
  56. Appl Environ Microbiol. 2014 Sep;80(18):5818-27 [PMID: 25015890]
  57. Proc Biol Sci. 2017 Jun 14;284(1856): [PMID: 28592670]
  58. Annu Rev Entomol. 2010;55:247-66 [PMID: 19728837]
  59. J Evol Biol. 2014 Sep;27(9):1956-64 [PMID: 25040065]
  60. Annu Rev Microbiol. 2005;59:155-89 [PMID: 16153167]
  61. J Evol Biol. 2013 Dec;26(12):2654-61 [PMID: 24118386]
  62. Proc Biol Sci. 2013 Jan 22;280(1751):20122103 [PMID: 23193123]
  63. J Evol Biol. 2007 Sep;20(5):2016-27 [PMID: 17714318]
  64. Microb Ecol. 2006 May;51(4):422-30 [PMID: 16598631]
  65. Trends Ecol Evol. 2016 Feb;31(2):158-170 [PMID: 26753782]
  66. Oecologia. 2016 Jan;180(1):169-79 [PMID: 26376661]
  67. Nat Rev Microbiol. 2022 Feb;20(2):109-121 [PMID: 34453137]
  68. Heredity (Edinb). 2007 Jan;98(1):13-20 [PMID: 17035954]
  69. Microbiologyopen. 2019 Jun;8(6):e00743 [PMID: 30311439]
  70. Philos Trans R Soc Lond B Biol Sci. 2019 Mar 18;374(1768):20180174 [PMID: 30966962]
  71. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  72. Brief Bioinform. 2019 Jul 19;20(4):1160-1166 [PMID: 28968734]
  73. ISME J. 2011 Feb;5(2):169-72 [PMID: 20827291]
  74. Front Microbiol. 2017 Nov 28;8:2237 [PMID: 29234308]
  75. Bioessays. 2020 Jul;42(7):e2000004 [PMID: 32548850]
  76. Microbiome. 2020 Jun 30;8(1):103 [PMID: 32605663]
  77. Science. 2005 Dec 16;310(5755):1781 [PMID: 16357252]
  78. Appl Environ Microbiol. 2018 Mar 1;84(6): [PMID: 29330177]
  79. Q Rev Biol. 2010 Jun;85(2):183-206 [PMID: 20565040]
  80. mSystems. 2016 Mar 29;1(2): [PMID: 27822520]
  81. Curr Opin Insect Sci. 2019 Apr;32:1-7 [PMID: 31113620]
  82. Exp Appl Acarol. 1996 Aug;20(8):421-34 [PMID: 8856963]
  83. Proc Biol Sci. 2008 Feb 22;275(1633):443-52 [PMID: 18055390]
  84. Ecol Lett. 2014 Oct;17(10):1238-46 [PMID: 25040855]
  85. Mol Biol Evol. 2009 Jul;26(7):1641-50 [PMID: 19377059]
  86. Nature. 2001 Feb 8;409(6821):707-10 [PMID: 11217858]
  87. Biofactors. 2000;11(1-2):91-2 [PMID: 10705971]
  88. ISME J. 2014 Feb;8(2):469-77 [PMID: 24030598]
  89. Curr Opin Insect Sci. 2019 Apr;32:8-14 [PMID: 31113636]

Word Cloud

Created with Highcharts 10.0.0spidermicrobiomemitehostadaptationperformancebacterialenvironmentplanthost'snewresourcestwo-spottedgeneticallydepletedstrainsnovelplantswhethercommunitiescompositionMicrobiomesinvolvedvitalprocessesimmuneresponsedetoxificationdigestiontherebyelementaryorganismalfunctioningultimatelyfitnessturnmayinfluencedunderstanddynamicsprocessperformedevolutionaryexperimentgeneratedrearedancestraltwoapproximately12generationsusereducedmagnitudegeneticresourcehenceallowedbetterdetectionsignalscoursetestednumbereggslaidlongevitycharacterizedcomponent16SrRNAgenesequencingdetermine:1shapedancestry2mites'relatedfoundclearlycorrelatedresultsshowlittletotalvariationcanexplainedpropertiesspeciesstudiedarguecommunitywithinhostsvaluableunderstandingspecies'multipleMicrobiomeHeritabilityRoleAdaptationHostsNovelResourcesTetranychusurticaeendosymbiontslocalmites

Similar Articles

Cited By (3)