The Bacterial and Fungal Gut Microbiota of the Greater Wax Moth, L. Consuming Polyethylene and Polystyrene.

Juliana M Ruiz Barrionuevo, Brayan Vilanova-Cuevas, Analía Alvarez, Eduardo Martín, Agustina Malizia, Alberto Galindo-Cardona, Ricardo E de Cristóbal, M Angelica Occhionero, Adriana Chalup, A Carolina Monmany-Garzia, Filipa Godoy-Vitorino
Author Information
  1. Juliana M Ruiz Barrionuevo: Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina.
  2. Brayan Vilanova-Cuevas: Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
  3. Analía Alvarez: Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.
  4. Eduardo Martín: Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.
  5. Agustina Malizia: Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina.
  6. Alberto Galindo-Cardona: Fundación Miguel Lillo (FML), Tucumán, Argentina.
  7. Ricardo E de Cristóbal: INSIBIO (CONICET - UNT), Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina.
  8. M Angelica Occhionero: Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.
  9. Adriana Chalup: Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.
  10. A Carolina Monmany-Garzia: Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina.
  11. Filipa Godoy-Vitorino: Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.

Abstract

Plastic production has been increasing exponentially in the last 60 years, but plastic disposal is out of control, resulting in the pollution of all ecosystems on Earth. Finding alternative environmentally sustainable choices, such as biodegradation by insects and their associated gut microbiota, is crucial, however we have only begun to characterize these ecosystems. Some bacteria and one fungus have been previously identified in the gut of Greater Wax Moth larvae ( L., Lepidoptera, Pyralidae) located mainly in the Northern hemisphere. The aim of this study was to describe changes in the gut microbiota associated with the consumption of polyethylene and polystyrene by the Greater Wax Moth in Argentina, considering both bacteria and fungi. Larvae were fed polyethylene, polystyrene and beeswax as control for 7 days. Next generation sequencing revealed changes in the bacterial gut microbiome of the wax moth larvae at the phyla and genus levels, with an increase in two strains. The fungal communities showed no differences in composition between diets, only changing in relative abundance. This is the first report of both bacterial and fungal communities associated with a plastivore insect. The results are promising and call for more studies concerning a potential multi-kingdom synergy in the plastic biodegradation process.

Keywords

References

  1. Appl Biochem Biotechnol. 2007 Apr;141(1):85-108 [PMID: 17625268]
  2. ISME J. 2012 Jul;6(7):1302-13 [PMID: 22189498]
  3. Front Bioeng Biotechnol. 2021 Aug 18;9:736062 [PMID: 34485265]
  4. Environ Pollut. 2021 Jul 1;280:116877 [PMID: 33770522]
  5. Nucleic Acids Res. 2019 Jan 8;47(D1):D259-D264 [PMID: 30371820]
  6. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  7. Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9641-9646 [PMID: 28830993]
  8. Sci Total Environ. 2020 Dec 1;746:141289 [PMID: 32745868]
  9. Front Microbiol. 2020 Mar 27;11:404 [PMID: 32292389]
  10. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  11. BMC Microbiol. 2020 Oct 21;20(1):321 [PMID: 33087056]
  12. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5555-60 [PMID: 18391199]
  13. Environ Sci Technol. 2020 Mar 3;54(5):2821-2831 [PMID: 32013402]
  14. J Appl Microbiol. 2017 Sep;123(3):582-593 [PMID: 28419654]
  15. Appl Environ Microbiol. 2015 Aug 15;81(16):5527-37 [PMID: 26048932]
  16. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21236-41 [PMID: 19948964]
  17. Appl Environ Microbiol. 2020 Sep 1;86(18): [PMID: 32631863]
  18. Environ Pollut. 2020 Jan;256:113265 [PMID: 31733968]
  19. Curr Biol. 2017 Apr 24;27(8):R292-R293 [PMID: 28441558]
  20. Environ Sci Technol. 2015 Oct 20;49(20):12080-6 [PMID: 26390034]
  21. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  22. Appl Environ Microbiol. 2019 Sep 17;85(19): [PMID: 31324632]
  23. ISME J. 2012 Aug;6(8):1621-4 [PMID: 22402401]
  24. Front Microbiol. 2018 Oct 23;9:2533 [PMID: 30405584]
  25. Science. 2018 Apr 6;360(6384):28-29 [PMID: 29622640]
  26. Microb Ecol. 2010 Feb;59(2):266-76 [PMID: 19609598]
  27. Appl Environ Microbiol. 2004 Jan;70(1):293-300 [PMID: 14711655]
  28. Appl Environ Microbiol. 2005 Nov;71(11):6590-9 [PMID: 16269686]
  29. Environ Sci Technol. 2014 Oct 21;48(20):11863-71 [PMID: 25230146]
  30. Environ Sci Technol. 2014 Dec 2;48(23):13776-84 [PMID: 25384056]
  31. Microorganisms. 2021 Jul 21;9(8): [PMID: 34442634]
  32. Biotechnol Adv. 2008 May-Jun;26(3):246-65 [PMID: 18337047]
  33. MycoKeys. 2020 May 27;67:55-80 [PMID: 32547306]
  34. Environ Sci Technol. 2020 Nov 17;54(22):14706-14715 [PMID: 33103898]
  35. Microb Ecol. 2018 May;75(4):1035-1048 [PMID: 29119316]
  36. Insects. 2017 Jun 09;8(2): [PMID: 28598383]
  37. Sci Total Environ. 2020 Feb 20;704:135931 [PMID: 31830656]
  38. PLoS One. 2020 Jan 14;15(1):e0227561 [PMID: 31935259]
  39. Sci Total Environ. 2020 Jul 15;726:138564 [PMID: 32315854]
  40. Environ Sci Technol. 2018 Jun 5;52(11):6526-6533 [PMID: 29763555]
  41. PLoS Genet. 2015 Mar 12;11(3):e1005030 [PMID: 25764027]
  42. Ecol Appl. 2020 Mar;30(2):e02044 [PMID: 31758826]
  43. Nat Methods. 2018 Oct;15(10):796-798 [PMID: 30275573]
  44. Int J Environ Res Public Health. 2019 May 31;16(11): [PMID: 31159351]
  45. Plant Cell Environ. 2019 Mar;42(3):1078-1086 [PMID: 30151965]
  46. Proc Biol Sci. 2020 Mar 11;287(1922):20200112 [PMID: 32126962]
  47. Bioengineered. 2021 Dec;12(1):1040-1053 [PMID: 33769197]
  48. Environ Sci Technol. 2015 Oct 20;49(20):12087-93 [PMID: 26390390]
  49. Curr Opin Chem Biol. 2015 Dec;29:108-19 [PMID: 26583519]
  50. BMC Microbiol. 2019 Jun 24;19(1):139 [PMID: 31234788]
  51. Cell Rep. 2019 Feb 26;26(9):2451-2464.e5 [PMID: 30811993]
  52. Genome Biol. 2011 Jun 24;12(6):R60 [PMID: 21702898]
  53. Microorganisms. 2021 Sep 01;9(9): [PMID: 34576755]
  54. Nucleic Acids Res. 2017 Jul 3;45(W1):W180-W188 [PMID: 28449106]
  55. Sci Rep. 2016 Jun 30;6:28774 [PMID: 27358031]
  56. Front Microbiol. 2016 May 11;7:689 [PMID: 27242715]
  57. Sci Total Environ. 2019 Jun 10;668:1025-1029 [PMID: 31018444]
  58. Environ Sci Technol. 2013 Jul 2;47(13):7137-46 [PMID: 23745679]

Grants

  1. P20 GM103475/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0gutplasticassociatedbacteriaGreaterWaxMothcontrolpollutionecosystemsbiodegradationmicrobiotalarvaeLchangespolyethylenepolystyreneArgentinafungibacterialfungalcommunitiesplastivoreinsectPlasticproductionincreasingexponentiallylast60 yearsdisposalresultingEarthFindingalternativeenvironmentallysustainablechoicesinsectscrucialhoweverbeguncharacterizeonefunguspreviouslyidentifiedLepidopteraPyralidaelocatedmainlyNorthernhemisphereaimstudydescribeconsumptionconsideringLarvaefedbeeswax7 daysNextgenerationsequencingrevealedmicrobiomewaxmothphylagenuslevelsincreasetwostrainsshoweddifferencescompositiondietschangingrelativeabundancefirstreportresultspromisingcallstudiesconcerningpotentialmulti-kingdomsynergyprocessBacterialFungalGutMicrobiotaConsumingPolyethylenePolystyrene

Similar Articles

Cited By