Leveraging plant physiological dynamics using physical reservoir computing.

Olivier Pieters, Tom De Swaef, Michiel Stock, Francis Wyffels
Author Information
  1. Olivier Pieters: IDLAB-AIRO-Ghent University-imec, Technologiepark-Zwijnaarde 126, 9052, Zwijnaarde, Belgium. olivier.pieters@ugent.be.
  2. Tom De Swaef: Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090, Melle, Belgium.
  3. Michiel Stock: KERMIT and Biobix, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
  4. Francis Wyffels: IDLAB-AIRO-Ghent University-imec, Technologiepark-Zwijnaarde 126, 9052, Zwijnaarde, Belgium.

Abstract

Plants are complex organisms subject to variable environmental conditions, which influence their physiology and phenotype dynamically. We propose to interpret plants as reservoirs in physical reservoir computing. The physical reservoir computing paradigm originates from computer science; instead of relying on Boolean circuits to perform computations, any substrate that exhibits complex non-linear and temporal dynamics can serve as a computing element. Here, we present the first application of physical reservoir computing with plants. In addition to investigating classical benchmark tasks, we show that Fragaria × ananassa (strawberry) plants can solve environmental and eco-physiological tasks using only eight leaf thickness sensors. Although the results indicate that plants are not suitable for general-purpose computation but are well-suited for eco-physiological tasks such as photosynthetic rate and transpiration rate. Having the means to investigate the information processing by plants improves quantification and understanding of integrative plant responses to dynamic changes in their environment. This first demonstration of physical reservoir computing with plants is key for transitioning towards a holistic view of phenotyping and early stress detection in precision agriculture applications since physical reservoir computing enables us to analyse plant responses in a general way: environmental changes are processed by plants to optimise their phenotype.

References

  1. Plant Cell. 2010 Jul;22(7):2201-18 [PMID: 20639446]
  2. New Phytol. 2021 Oct;232(1):25-41 [PMID: 34245021]
  3. Science. 2021 Apr 23;372(6540): [PMID: 33888615]
  4. Nature. 2017 Mar 15;543(7645):337-345 [PMID: 28300110]
  5. Sci Rep. 2015 May 27;5:10487 [PMID: 26014748]
  6. Front Plant Sci. 2021 Dec 23;12:747142 [PMID: 35003151]
  7. Sci Adv. 2021 Aug 18;7(34): [PMID: 34407948]
  8. Artif Life. 2013 Winter;19(1):35-66 [PMID: 23186351]
  9. New Phytol. 2020 Feb;225(3):1111-1119 [PMID: 31127613]
  10. Planta. 2002 Dec;216(2):203-11 [PMID: 12447533]
  11. New Phytol. 2016 Dec;212(4):838-855 [PMID: 27783423]
  12. Sensors (Basel). 2020 Nov 11;20(22): [PMID: 33187119]
  13. Nat Commun. 2020 May 15;11(1):2439 [PMID: 32415218]
  14. Trends Plant Sci. 2016 Apr;21(4):286-294 [PMID: 26690331]
  15. J Neurosci. 2013 Jan 30;33(5):1940-53 [PMID: 23365233]
  16. New Phytol. 2012 Oct;196(1):306-317 [PMID: 22816502]
  17. Soft Robot. 2018 Jun;5(3):339-347 [PMID: 29708857]
  18. Nat Commun. 2017 Dec 19;8(1):2204 [PMID: 29259188]
  19. Plant Physiol. 2013 Jul;162(3):1632-51 [PMID: 23669746]
  20. New Phytol. 2016 Apr;210(1):81-7 [PMID: 26445400]
  21. PLoS Comput Biol. 2016 Jun 10;12(6):e1004967 [PMID: 27286251]
  22. Nat Commun. 2011 Sep 13;2:468 [PMID: 21915110]
  23. Plant Physiol. 2018 Feb;176(2):977-989 [PMID: 29046421]
  24. Nat Commun. 2014 Mar 24;5:3541 [PMID: 24662967]
  25. Plant Biol (Stuttg). 2013 Jan;15(1):1-12 [PMID: 23121044]
  26. Annu Rev Plant Biol. 2009;60:279-304 [PMID: 19575584]
  27. J Neurosci. 2015 Mar 4;35(9):4040-51 [PMID: 25740531]
  28. Plant Signal Behav. 2010 Nov;5(11):1391-4 [PMID: 21051941]
  29. Opt Express. 2013 Jan 14;21(1):12-20 [PMID: 23388891]
  30. Sensors (Basel). 2020 May 28;20(11): [PMID: 32481619]
  31. Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15492-7 [PMID: 21896747]
  32. J Exp Bot. 2021 Mar 29;72(7):2642-2656 [PMID: 33326568]
  33. Science. 2016 Nov 18;354(6314):857-861 [PMID: 27856901]
  34. Neural Netw. 2019 Jul;115:100-123 [PMID: 30981085]
  35. Front Neurorobot. 2015 Aug 17;9:9 [PMID: 26347645]
  36. Plant Physiol. 2002 May;129(1):235-43 [PMID: 12011354]
  37. Sci Rep. 2021 Jun 21;11(1):13002 [PMID: 34155251]
  38. Biosystems. 2009 Feb;95(2):90-7 [PMID: 18761392]
  39. Neural Netw. 2020 Jun;126:191-217 [PMID: 32248008]
  40. J Exp Bot. 2010 May;61(8):2101-15 [PMID: 19995824]
  41. EMBO Rep. 2008 Jan;9(1):10-4 [PMID: 18174892]
  42. Ann Bot. 2003 Jul;92(1):1-20 [PMID: 12740212]
  43. Nature. 1995 Nov 23;378(6555):362-4 [PMID: 7477370]
  44. PLoS Biol. 2009 Dec;7(12):e1000260 [PMID: 20027205]

MeSH Term

Agriculture
Fragaria
Photosynthesis
Plant Leaves

Word Cloud

Created with Highcharts 10.0.0plantscomputingphysicalreservoirenvironmentaltasksplantcomplexphenotypedynamicscanfirsteco-physiologicalusingrateresponseschangesPlantsorganismssubjectvariableconditionsinfluencephysiologydynamicallyproposeinterpretreservoirsparadigmoriginatescomputerscienceinsteadrelyingBooleancircuitsperformcomputationssubstrateexhibitsnon-lineartemporalserveelementpresentapplicationadditioninvestigatingclassicalbenchmarkshowFragaria×ananassastrawberrysolveeightleafthicknesssensorsAlthoughresultsindicatesuitablegeneral-purposecomputationwell-suitedphotosynthetictranspirationmeansinvestigateinformationprocessingimprovesquantificationunderstandingintegrativedynamicenvironmentdemonstrationkeytransitioningtowardsholisticviewphenotypingearlystressdetectionprecisionagricultureapplicationssinceenablesusanalysegeneralway:processedoptimiseLeveragingphysiological

Similar Articles

Cited By