Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress.

Samaneh Attaran Dowom, Zahra Karimian, Mahboubeh Mostafaei Dehnavi, Leila Samiei
Author Information
  1. Samaneh Attaran Dowom: Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
  2. Zahra Karimian: Department of Ornamental plants, Research center for plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran. zkarimian@um.ac.ir.
  3. Mahboubeh Mostafaei Dehnavi: Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
  4. Leila Samiei: Department of Ornamental plants, Research center for plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.

Abstract

BACKGROUND: The use of organic nanoparticles to improve drought resistance and water demand characteristics in plants seems to be a promising eco-friendly strategy for water resource management in arid and semi-arid areas. This study aimed to investigate the effect of chitosan nanoparticles (CNPs) (0, 30, 60 and 90 ppm) on some physiological, biochemical, and anatomical responses of Salvia abrotanoides under multiple irrigation regimes (30% (severe), 50% (medium) and 100% (control) field capacity).
RESULTS: The results showed that drought stress decreases almost all biochemical parameters. However, foliar application of CNPs mitigated the effects caused by drought stress. This elicitor decreased electrolyte conductivity (35%), but improved relative water content (12.65%), total chlorophyll (63%), carotenoids (68%), phenol (23.1%), flavonoid (36.4%), soluble sugar (58%), proline (49%), protein (45.2%) in S. abrotanoides plants compared to the control (CNPs = 0). Furthermore, the activity of antioxidant enzymes superoxide dismutase (86%), polyphenol oxidase (72.8%), and guaiacol peroxidase (75.7%) were enhanced after CNPs treatment to reduce the effects of water deficit. Also, the CNPs led to an increase in stomatal density (5.2 and 6.6%) while decreasing stomatal aperture size (50 and 25%) and semi-closed stomata (26 and 53%) in leaves.
CONCLUSION: The findings show that CNPs not only can considerably reduce water requirement of S. abrotanoides but also are able to enhance the drought tolerance ability of this plant particularly in drought-prone areas.

Keywords

References

  1. Sci Rep. 2015 Oct 16;5:15195 [PMID: 26471771]
  2. J Proteome Res. 2017 Aug 4;16(8):3039-3052 [PMID: 28703589]
  3. Bioresour Technol. 2004 Oct;95(1):85-93 [PMID: 15207300]
  4. Plant Physiol Biochem. 2017 Jun;115:298-307 [PMID: 28412634]
  5. Food Sci Anim Resour. 2019 Feb;39(1):73-83 [PMID: 30882076]
  6. Front Plant Sci. 2020 Nov 13;11:591911 [PMID: 33281852]
  7. ACS Omega. 2020 Sep 04;5(37):24145-24153 [PMID: 32984737]
  8. Sci Rep. 2020 Apr 23;10(1):6883 [PMID: 32327687]
  9. Nanomaterials (Basel). 2020 Sep 24;10(10): [PMID: 32987697]
  10. Int J Biol Macromol. 2019 Apr 1;126:91-100 [PMID: 30557637]
  11. J Agric Food Chem. 2020 Nov 4;68(44):12203-12211 [PMID: 33095004]
  12. Biology (Basel). 2022 Feb 04;11(2): [PMID: 35205108]
  13. Ecotoxicol Environ Saf. 2020 Dec 15;206:111158 [PMID: 32866892]
  14. Adv Food Nutr Res. 2014;73:15-31 [PMID: 25300540]
  15. Caspian J Intern Med. 2014 Summer;5(3):156-61 [PMID: 25202443]
  16. Plant Physiol Biochem. 2017 Jan;110:194-209 [PMID: 27269705]
  17. Environ Int. 2020 May;138:105646 [PMID: 32179325]
  18. Sci Rep. 2019 Jun 3;9(1):8164 [PMID: 31160657]
  19. Plants (Basel). 2021 Feb 23;10(2): [PMID: 33672429]
  20. Pharmacogn Mag. 2017 Oct;13(Suppl 3):S676-S683 [PMID: 29142432]
  21. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  22. Front Plant Sci. 2019 Jan 09;9:1950 [PMID: 30687353]
  23. Plant Physiol Biochem. 2018 Jun;127:393-402 [PMID: 29677682]
  24. Plants (Basel). 2020 Jan 02;9(1): [PMID: 31906471]
  25. Sci Rep. 2020 Jan 22;10(1):912 [PMID: 31969653]
  26. New Phytol. 2019 Jan;221(1):371-384 [PMID: 30043395]
  27. Plant Physiol. 1977 Feb;59(2):315-8 [PMID: 16659840]
  28. Plant Physiol Biochem. 2021 May;162:291-300 [PMID: 33714144]
  29. PLoS One. 2018 Sep 7;13(9):e0203769 [PMID: 30192877]
  30. Front Plant Sci. 2016 May 12;7:645 [PMID: 27242846]
  31. Physiol Mol Biol Plants. 2019 Mar;25(2):313-326 [PMID: 30956416]
  32. Plant Physiol Biochem. 2021 Apr;161:166-175 [PMID: 33610861]
  33. Plant Physiol. 1999 Sep;121(1):147-52 [PMID: 10482669]
  34. Chem Biodivers. 2018 Jun;15(6):e1700565 [PMID: 29687655]
  35. Plants (Basel). 2021 Jun 04;10(6): [PMID: 34199718]
  36. Front Plant Sci. 2017 Jan 24;8:52 [PMID: 28174590]
  37. Antioxidants (Basel). 2020 Feb 21;9(2): [PMID: 32098120]
  38. Ecotoxicol Environ Saf. 2020 Jan 15;187:109841 [PMID: 31677566]
  39. 3 Biotech. 2017 May;7(1):81 [PMID: 28500403]

MeSH Term

Antioxidants
Chitosan
Droughts
Nanoparticles
Salvia
Stress, Physiological
Water

Chemicals

Antioxidants
Water
Chitosan

Word Cloud

Created with Highcharts 10.0.0droughtwaterCNPsabrotanoidesnanoparticlesstressbiochemicalresponsesSalviaimproveplantsareasphysiologicalcontroleffectsSenzymesreducedeficitstomatalChitosanBACKGROUND:useorganicresistancedemandcharacteristicsseemspromisingeco-friendlystrategyresourcemanagementaridsemi-aridstudyaimedinvestigateeffectchitosan0306090 ppmanatomicalmultipleirrigationregimes30%severe50%medium100%fieldcapacityRESULTS:resultsshoweddecreasesalmostparametersHoweverfoliarapplicationmitigatedcausedelicitordecreasedelectrolyteconductivity35%improvedrelativecontent1265%totalchlorophyll63%carotenoids68%phenol231%flavonoid364%solublesugar58%proline49%protein452%comparedCNPs = 0Furthermoreactivityantioxidantsuperoxidedismutase86%polyphenoloxidase728%guaiacolperoxidase757%enhancedtreatmentAlsoledincreasedensity5266%decreasingaperturesize5025%semi-closedstomata2653%leavesCONCLUSION:findingsshowcanconsiderablyrequirementalsoableenhancetoleranceabilityplantparticularlydrought-proneKarAntioxidantBiochemicalDroughtWater

Similar Articles

Cited By