Improving malignancy risk prediction of indeterminate pulmonary nodules with imaging features and biomarkers.

Hannah N Marmor, Laurel Jackson, Susan Gawel, Michael Kammer, Pierre P Massion, Eric L Grogan, Gerard J Davis, Stephen A Deppen
Author Information
  1. Hannah N Marmor: Department of Thoracic Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA. Electronic address: hannah.marmor@vumc.org.
  2. Laurel Jackson: Abbott Diagnostics Division, 100 Abbott Park Road, Abbott Park, IL 60064, USA. Electronic address: laurel.jackson@abbott.com.
  3. Susan Gawel: Abbott Diagnostics Division, 100 Abbott Park Road, Abbott Park, IL 60064, USA. Electronic address: susan.gawel@abbott.com.
  4. Michael Kammer: Department of Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA. Electronic address: michael.kammer@vumc.org.
  5. Pierre P Massion: Department of Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA.
  6. Eric L Grogan: Department of Thoracic Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA; Tennessee Valley Healthcare System, Veterans Affairs, 1310 24th Avenue South, Nashville, TN 37212, USA.
  7. Gerard J Davis: Abbott Diagnostics Division, 100 Abbott Park Road, Abbott Park, IL 60064, USA. Electronic address: gerard.davis@abbott.com.
  8. Stephen A Deppen: Department of Thoracic Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA; Tennessee Valley Healthcare System, Veterans Affairs, 1310 24th Avenue South, Nashville, TN 37212, USA. Electronic address: steve.deppen@vumc.org.

Abstract

BACKGROUND: Non-invasive biomarkers are needed to improve management of indeterminate pulmonary nodules (IPNs) suspicious for lung cancer.
METHODS: Protein biomarkers were quantified in serum samples from patients with 6-30 mm IPNs (n = 338). A previously derived and validated radiomic score based upon nodule shape, size, and texture was calculated from features derived from CT scans. Lung cancer prediction models incorporating biomarkers, radiomics, and clinical factors were developed. Diagnostic performance was compared to the current standard of risk estimation (Mayo). IPN risk reclassification was determined using bias-corrected clinical net reclassification index.
RESULTS: Age, radiomic score, CYFRA 21-1, and CEA were identified as the strongest predictors of cancer. These models provided greater diagnostic accuracy compared to Mayo with AUCs of 0.76 (95 % CI 0.70-0.81) using logistic regression and 0.73 (0.67-0.79) using random forest methods. Random forest and logistic regression models demonstrated improved risk reclassification with median cNRI of 0.21 (Q1 0.20, Q3 0.23) and 0.21 (0.19, 0.23) compared to Mayo for malignancy.
CONCLUSIONS: A combined biomarker, radiomic, and clinical risk factor model provided greater diagnostic accuracy of IPNs than Mayo. This model demonstrated a strong ability to reclassify malignant IPNs. Integrating a combined approach into the current diagnostic algorithm for IPNs could improve nodule management.

Keywords

References

  1. N Engl J Med. 2011 Aug 4;365(5):395-409 [PMID: 21714641]
  2. N Engl J Med. 2013 May 23;368(21):1980-91 [PMID: 23697514]
  3. Chest. 2013 May;143(5 Suppl):e93S-e120S [PMID: 23649456]
  4. Tumour Biol. 2003 Aug-Sep;24(4):209-18 [PMID: 14654716]
  5. Arch Intern Med. 1997 Apr 28;157(8):849-55 [PMID: 9129544]
  6. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  7. Chest. 2018 Sep;154(3):491-500 [PMID: 29496499]
  8. Thorax. 2015 Aug;70(8):794-8 [PMID: 26135833]
  9. J Natl Cancer Inst. 2008 Oct 15;100(20):1432-8 [PMID: 18840817]
  10. Clin Biochem. 2004 Jul;37(7):505-11 [PMID: 15234231]
  11. Am J Respir Crit Care Med. 2021 Dec 1;204(11):1306-1316 [PMID: 34464235]
  12. Clin Cancer Res. 2017 Mar 15;23(6):1442-1449 [PMID: 27663588]
  13. Biochem Med (Zagreb). 2014 Feb 15;24(1):12-8 [PMID: 24627710]
  14. Transl Res. 2021 Jul;233:77-91 [PMID: 33618009]
  15. Ann Am Thorac Soc. 2018 Oct;15(10):1117-1126 [PMID: 30272500]
  16. N Engl J Med. 2013 Sep 5;369(10):910-9 [PMID: 24004118]
  17. Chest. 2017 Aug;152(2):263-270 [PMID: 28115167]
  18. Ann Thorac Surg. 2021 Feb;111(2):416-420 [PMID: 32682756]
  19. JAMA Netw Open. 2021 Dec 1;4(12):e2137508 [PMID: 34919136]
  20. N Engl J Med. 2020 Feb 6;382(6):503-513 [PMID: 31995683]
  21. J Thorac Oncol. 2019 Oct;14(10):1732-1742 [PMID: 31260833]
  22. Br J Cancer. 1995 Jan;71(1):160-5 [PMID: 7529525]
  23. Biomed Res Int. 2017;2017:2013989 [PMID: 28607926]
  24. Am J Respir Crit Care Med. 2012 Feb 15;185(4):363-72 [PMID: 21980032]
  25. Tumour Biol. 2012 Aug;33(4):1141-9 [PMID: 22373583]
  26. Cancer Epidemiol Biomarkers Prev. 2019 Feb;28(2):321-326 [PMID: 30341097]
  27. Med Decis Making. 2013 Feb;33(2):154-62 [PMID: 23042826]
  28. Thorax. 2015 Aug;70 Suppl 2:ii1-ii54 [PMID: 26082159]
  29. Cancer Prev Res (Phila). 2015 Jun;8(6):570-5 [PMID: 25873368]
  30. Can Assoc Radiol J. 2015 Feb;66(1):53-7 [PMID: 24931045]
  31. Cancer Prev Res (Phila). 2014 Dec;7(12):1173-8 [PMID: 25348855]
  32. Adv Clin Chem. 2018;86:1-21 [PMID: 30144837]
  33. Clin Chim Acta. 2016 Apr 1;455:102-6 [PMID: 26851650]
  34. Lancet Respir Med. 2021 Jul;9(7):689-691 [PMID: 33965004]
  35. Am J Respir Crit Care Med. 2015 Nov 15;192(10):1208-14 [PMID: 26214244]
  36. Cancer Res. 1994 Apr 15;54(8):2136-40 [PMID: 8174119]
  37. Korean J Radiol. 2020 Feb;21(2):159-171 [PMID: 31997591]
  38. Stat Med. 2004 Aug 30;23(16):2567-86 [PMID: 15287085]

Grants

  1. R01 CA252964/NCI NIH HHS
  2. T32 CA106183/NCI NIH HHS
  3. U01 CA152662/NCI NIH HHS

MeSH Term

Antigens, Neoplasm
Biomarkers
Humans
Keratin-19
Lung Neoplasms
Multiple Pulmonary Nodules
Tomography, X-Ray Computed

Chemicals

Antigens, Neoplasm
Biomarkers
Keratin-19
antigen CYFRA21.1

Word Cloud

Created with Highcharts 10.0.00IPNsriskbiomarkerscancerMayoradiomicnodulemodelsclinicalcomparedreclassificationusingdiagnosticimprovemanagementindeterminatepulmonarynodulesderivedscorefeaturesLungpredictioncurrentprovidedgreateraccuracylogisticregressionforestdemonstrated2123malignancycombinedmodelBACKGROUND:Non-invasiveneededsuspiciouslungMETHODS:Proteinquantifiedserumsamplespatients6-30 mmn = 338previouslyvalidatedbaseduponshapesizetexturecalculatedCTscansincorporatingradiomicsfactorsdevelopedDiagnosticperformancestandardestimationIPNdeterminedbias-correctednetindexRESULTS:AgeCYFRA21-1CEAidentifiedstrongestpredictorsAUCs7695 %CI70-0817367-079randommethodsRandomimprovedmediancNRIQ120Q319CONCLUSIONS:biomarkerfactorstrongabilityreclassifymalignantIntegratingapproachalgorithmImprovingimagingBiomarkerDiagnosisPredictionmodelingPulmonary

Similar Articles

Cited By