Materials Discovery With Machine Learning and Knowledge Discovery.

Osvaldo N Oliveira, Maria Cristina F Oliveira
Author Information
  1. Osvaldo N Oliveira: Sao Carlos Institute of Physics (IFSC), University of Sao Paulo, Sao Paulo, Brazil.
  2. Maria Cristina F Oliveira: Institute of Mathematics and Computer Science (ICMC), University of Sao Paulo, Sao Paulo, Brazil.

Abstract

Machine learning and other artificial intelligence methods are gaining increasing prominence in chemistry and materials sciences, especially for materials design and discovery, and in data analysis of results generated by sensors and biosensors. In this paper, we present a perspective on this current use of machine learning, and discuss the prospects of the future impact of extending the use of machine learning to encompass knowledge discovery as an essential step towards a new paradigm of machine-generated knowledge. The reasons why results so far have been limited are given with a discussion of the limitations of machine learning in tasks requiring interpretation. Also discussed is the need to adapt the training of students and scientists in chemistry and materials sciences, to better explore the potential of artificial intelligence capabilities.

Keywords

References

  1. iScience. 2021 Feb 06;24(3):102155 [PMID: 33665573]
  2. Nanomedicine (Lond). 2016 Apr;11(8):959-82 [PMID: 26979668]
  3. Nature. 2018 Sep;561(7722):273-274 [PMID: 30202054]
  4. ACS Cent Sci. 2019 Oct 23;5(10):1717-1730 [PMID: 31660440]
  5. Sci Data. 2020 Sep 8;7(1):299 [PMID: 32901046]
  6. ACS Appl Mater Interfaces. 2022 Jan 12;14(1):717-725 [PMID: 34967594]
  7. J Chem Sci (Bangalore). 2022;134(1):2 [PMID: 34955617]
  8. Nat Mater. 2017 Apr;16(4):414-418 [PMID: 28218920]
  9. ACS Appl Mater Interfaces. 2021 Nov 17;13(45):53303-53313 [PMID: 33985329]
  10. ACS Appl Mater Interfaces. 2021 Nov 17;13(45):53301-53302 [PMID: 34788937]
  11. Nat Commun. 2022 Jan 18;13(1):368 [PMID: 35042872]
  12. Sci Data. 2016 Mar 15;3:160018 [PMID: 26978244]
  13. ACS Appl Mater Interfaces. 2017 Nov 29;9(47):41428-41434 [PMID: 29115829]
  14. Adv Funct Mater. 2013 Dec 10;23(46):5746-5752 [PMID: 27524957]
  15. Discov Mater. 2021;1(1):12 [PMID: 33899049]
  16. Talanta. 2022 Jun 1;243:123327 [PMID: 35240367]
  17. ACS Sens. 2018 Aug 24;3(8):1433-1438 [PMID: 30004210]

Word Cloud

Created with Highcharts 10.0.0learningmaterialsdiscoverymachinechemistryknowledgeMachineartificialintelligencesciencesdataresultsuseDiscoverymethodsgainingincreasingprominenceespeciallydesignanalysisgeneratedsensorsbiosensorspaperpresentperspectivecurrentdiscussprospectsfutureimpactextendingencompassessentialsteptowardsnewparadigmmachine-generatedreasonsfarlimitedgivendiscussionlimitationstasksrequiringinterpretationAlsodiscussedneedadapttrainingstudentsscientistsbetterexplorepotentialcapabilitiesMaterialsLearningKnowledgecomputationalanalytics

Similar Articles

Cited By