Sources and Fluxes of Organic Carbon and Energy to Microorganisms in Global Marine Sediments.

James A Bradley, Sandra Arndt, Jan P Amend, Ewa Burwicz-Galerne, Douglas E LaRowe
Author Information
  1. James A Bradley: School of Geography, Queen Mary University of London, London, United Kingdom.
  2. Sandra Arndt: BGeosys, Department of Earth and Environmental Sciences, Université Libre de Bruxelles, Brussels, Belgium.
  3. Jan P Amend: Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.
  4. Ewa Burwicz-Galerne: MARUM Center for Marine Environmental Sciences, Faculty of Geosciences, University of Bremen, Bremen, Germany.
  5. Douglas E LaRowe: Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.

Abstract

Marine sediments comprise one of the largest microbial habitats and organic carbon sinks on the planet. However, it is unclear how variations in sediment physicochemical properties impact microorganisms on a global scale. Here we investigate patterns in the distribution of microbial cells, organic carbon, and the amounts of power used by microorganisms in global sediments. Our results show that sediment on continental shelves and margins is predominantly anoxic and contains cells whose power utilization decreases with sediment depth and age. Sediment in abyssal zones contains microbes that use low amounts of power on a per cell basis, across large gradients in sediment depth and age. We find that trends in cell abundance, POC storage and degradation, and microbial power utilization are mainly structured by depositional setting and redox conditions, rather than sediment depth and age. We also reveal distinct trends in per-cell power regime across different depositional settings, from maxima of ∼10 W cell in recently deposited shelf sediments to minima of <10 W cell in deeper and ancient sediments. Overall, we demonstrate broad global-scale connections between the depositional setting and redox conditions of global sediment, and the amounts of organic carbon and activity of deep biosphere microorganisms.

Keywords

References

  1. Front Microbiol. 2019 May 14;10:956 [PMID: 31139156]
  2. Front Microbiol. 2018 Feb 13;9:180 [PMID: 29487581]
  3. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16213-6 [PMID: 22927371]
  4. Sci Rep. 2019 Jun 14;9(1):8633 [PMID: 31201353]
  5. Front Microbiol. 2017 Jan 31;8:31 [PMID: 28197128]
  6. Nat Commun. 2013;4:2539 [PMID: 24071791]
  7. mBio. 2020 Oct 6;11(5): [PMID: 33024037]
  8. FEMS Microbiol Ecol. 2020 Nov 25;96(12): [PMID: 33150943]
  9. Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11651-6 [PMID: 19561304]
  10. Sci Rep. 2017 Jul 18;7(1):5680 [PMID: 28720809]
  11. ISME J. 2021 Dec;15(12):3657-3667 [PMID: 34158628]
  12. Nature. 2000 Oct 5;407(6804):623-6 [PMID: 11034209]
  13. Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12941-5 [PMID: 20616006]
  14. Adv Mar Biol. 2005;48:1-599 [PMID: 15797449]
  15. Science. 2004 Dec 24;306(5705):2216-21 [PMID: 15618510]
  16. Nat Commun. 2018 Nov 27;9(1):4999 [PMID: 30479325]
  17. Geobiology. 2019 Jan;17(1):43-59 [PMID: 30248245]
  18. Front Microbiol. 2015 Jul 15;6:718 [PMID: 26236299]
  19. Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32617-32626 [PMID: 33288718]
  20. Science. 2020 Dec 4;370(6521):1230-1234 [PMID: 33273103]
  21. Geochim Cosmochim Acta. 1997 Apr;61(7):1359-412 [PMID: 11541435]
  22. Front Microbiol. 2012 Jan 13;2:284 [PMID: 22347874]
  23. Biotechnol Bioeng. 1993 Aug 5;42(4):509-19 [PMID: 18613056]
  24. Nat Microbiol. 2021 Feb;6(2):246-256 [PMID: 33398096]
  25. Sci Adv. 2020 Aug 05;6(32):eaba0697 [PMID: 32821818]
  26. Environ Microbiol Rep. 2021 Oct;13(5):696-701 [PMID: 34184398]
  27. Environ Microbiol. 2010 May;12(5):1348-62 [PMID: 20236170]
  28. Science. 1980 Sep 26;209(4464):1527-30 [PMID: 17745965]
  29. Nat Commun. 2019 Aug 6;10(1):3519 [PMID: 31388058]
  30. Nat Commun. 2020 Jul 28;11(1):3626 [PMID: 32724059]
  31. Front Microbiol. 2022 May 18;13:804575 [PMID: 35663876]
  32. Nature. 2005 Jul 21;436(7049):390-4 [PMID: 16034418]
  33. Nature. 2012 Mar 18;484(7392):101-4 [PMID: 22425999]
  34. Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27587-27597 [PMID: 33077589]
  35. Science. 2012 May 18;336(6083):922-5 [PMID: 22605778]

Word Cloud

Created with Highcharts 10.0.0sedimentsedimentspowerorganiccarbonmicroorganismscellmicrobialglobalamountsdepthagedepositionalMarinecellscontainsutilizationacrosstrendssettingredoxconditionsWdeepbiospherecompriseonelargesthabitatssinksplanetHoweverunclearvariationsphysicochemicalpropertiesimpactscaleinvestigatepatternsdistributionusedresultsshowcontinentalshelvesmarginspredominantlyanoxicwhosedecreasesSedimentabyssalzonesmicrobesuselowperbasislargegradientsfindabundancePOCstoragedegradationmainlystructuredratheralsorevealdistinctper-cellregimedifferentsettingsmaxima∼10recentlydepositedshelfminima<10deeperancientOveralldemonstratebroadglobal-scaleconnectionsactivitySourcesFluxesOrganicCarbonEnergyMicroorganismsGlobalSedimentsbioenergeticsmarine

Similar Articles

Cited By