TEspeX: consensus-specific quantification of transposable element expression preventing biases from exonized fragments.

Federico Ansaloni, Nicolò Gualandi, Mauro Esposito, Stefano Gustincich, Remo Sanges
Author Information
  1. Federico Ansaloni: Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste 34136, Italy. ORCID
  2. Nicolò Gualandi: Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste 34136, Italy.
  3. Mauro Esposito: Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste 34136, Italy.
  4. Stefano Gustincich: Central RNA Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy.
  5. Remo Sanges: Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste 34136, Italy.

Abstract

SUMMARY: Transposable elements (TEs) play key roles in crucial biological pathways. Therefore, several tools enabling the quantification of their expression were recently developed. However, many of the existing tools lack the capability to distinguish between the transcription of autonomously expressed TEs and TE fragments embedded in canonical coding/non-coding non-TE transcripts. Consequently, an apparent change in the expression of a given TE may simply reflect the variation in the expression of the transcripts containing TE-derived sequences. To overcome this issue, we have developed TEspeX, a pipeline for the quantification of TE expression at the consensus level. TEspeX uses Illumina RNA-seq short reads to quantify TE expression avoiding counting reads deriving from inactive TE fragments embedded in canonical transcripts.
AVAILABILITY AND IMPLEMENTATION: The tool is implemented in python3, distributed under the GNU General Public License (GPL) and available on Github at https://github.com/fansalon/TEspeX (Zenodo URL: https://doi.org/10.5281/zenodo.6800331).
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

References

  1. PLoS Comput Biol. 2019 Aug 19;15(8):e1007293 [PMID: 31425522]
  2. BMC Bioinformatics. 2019 Nov 22;20(Suppl 9):484 [PMID: 31757208]
  3. Nat Commun. 2019 Jul 18;10(1):3182 [PMID: 31320637]
  4. iScience. 2021 Dec 28;25(1):103702 [PMID: 35036881]
  5. PLoS Comput Biol. 2019 Sep 30;15(9):e1006453 [PMID: 31568525]
  6. Genome Res. 2002 Oct;12(10):1483-95 [PMID: 12368240]
  7. Mob DNA. 2015 Dec 29;6:24 [PMID: 26719777]
  8. Front Cell Neurosci. 2022 Jan 14;15:743797 [PMID: 35095420]
  9. Trends Genet. 2018 Oct;34(10):806-820 [PMID: 30057183]
  10. Nat Rev Genet. 2020 Dec;21(12):721-736 [PMID: 32576954]
  11. Bioinformatics. 2020 Feb 15;36(4):1167-1173 [PMID: 31584629]
  12. Nucleic Acids Res. 2017 Mar 17;45(5):e31 [PMID: 27899577]
  13. PLoS Genet. 2013 Apr;9(4):e1003470 [PMID: 23637635]
  14. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  15. Mob DNA. 2015 Jun 02;6:11 [PMID: 26045719]
  16. Cell Rep. 2021 Sep 14;36(11):109694 [PMID: 34525372]
  17. Biology (Basel). 2022 May 27;11(6): [PMID: 35741347]
  18. PLoS Genet. 2017 Mar 16;13(3):e1006635 [PMID: 28301478]
  19. Biochimie. 2011 Nov;93(11):1928-34 [PMID: 21787833]
  20. Nucleic Acids Res. 2019 Mar 18;47(5):e27 [PMID: 30624635]
  21. Nat Rev Neurosci. 2014 Aug;15(8):497-506 [PMID: 25005482]
  22. BMC Biotechnol. 2013 Nov 13;13:99 [PMID: 24225116]
  23. Nat Rev Genet. 2017 Feb;18(2):71-86 [PMID: 27867194]
  24. Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12565-12572 [PMID: 30455304]
  25. Nat Genet. 2009 May;41(5):563-71 [PMID: 19377475]
  26. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  27. Pac Symp Biocomput. 2018;23:168-179 [PMID: 29218879]
  28. PLoS One. 2016 Dec 29;11(12):e0169196 [PMID: 28033411]
  29. Nat Rev Cancer. 2017 Jul;17(7):415-424 [PMID: 28642606]
  30. Bioinformatics. 2015 Nov 15;31(22):3593-9 [PMID: 26206304]
  31. Nat Rev Genet. 2007 Dec;8(12):973-82 [PMID: 17984973]

Grants

  1. /International School for Advanced Studies
  2. /Istituto Italiano di Tecnologia
  3. /International School for Advanced Studies

MeSH Term

DNA Transposable Elements
Consensus
RNA-Seq
High-Throughput Nucleotide Sequencing
Bias

Chemicals

DNA Transposable Elements

Word Cloud

Created with Highcharts 10.0.0expressionTEquantificationfragmentstranscriptsTEstoolsdevelopedembeddedcanonicalTEspeXreadsavailableSUMMARY:TransposableelementsplaykeyrolescrucialbiologicalpathwaysThereforeseveralenablingrecentlyHowevermanyexistinglackcapabilitydistinguishtranscriptionautonomouslyexpressedcoding/non-codingnon-TEConsequentlyapparentchangegivenmaysimplyreflectvariationcontainingTE-derivedsequencesovercomeissuepipelineconsensuslevelusesIlluminaRNA-seqshortquantifyavoidingcountingderivinginactiveAVAILABILITYANDIMPLEMENTATION:toolimplementedpython3distributedGNUGeneralPublicLicenseGPLGithubhttps://githubcom/fansalon/TEspeXZenodoURL:https://doiorg/105281/zenodo6800331SUPPLEMENTARYINFORMATION:SupplementarydataBioinformaticsonlineTEspeX:consensus-specifictransposableelementpreventingbiasesexonized

Similar Articles

Cited By