Single-tube Multiplex Nested PCR System for Efficient Detection of Pathogenic Microorganisms in SPF Rodents.

Wang Jie Xu, Ya Jun Pan, Wei Jie Li, Li Na Peng, Dong Li Liang, Man Zhang, Wei Ding, Zhao Xia Wang
Author Information
  1. Wang Jie Xu: Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China.
  2. Ya Jun Pan: Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China.
  3. Wei Jie Li: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
  4. Li Na Peng: Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China.
  5. Dong Li Liang: Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China.
  6. Man Zhang: Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China.
  7. Wei Ding: Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
  8. Zhao Xia Wang: Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China.

Abstract

PCR testing is increasingly important for microbial control in SPF facilities. However, most current PCR methods are timeconsuming and require compromise between high sensitivity and high multiplexing. We developed a one-tube multiplex nested PCR strategy (MN-PCR) for simultaneous direct (that is, without culturing) detection of multiple pathogens. We first aligned sequences for the 16S rDNA genes of selected target bacteria and a panel of closely related organisms. From these data, we designed a pair of universal primers and multiple sets of species-specific PCR primers to amplify the target sequences; the universal primers were modified to include various degenerate bases and locked nucleic acids. In a single tube, 16S rDNA sequences were amplified by using the nested PCR primers under high temperature (that is, above 65°C) during the first stage of the MN-PCR procedure, when the target-species-specific PCR primers do not support amplification due to their short length. In addition, the concentration of the nested PCR primers during the first stage was adjusted to ensure that they were consumed and did not yield visible bands themselves. During the second stage, the enriched 16S rDNA sequences then served as templates for amplification of the species-specific fragments by using the multiple PCR primers at low annealing temperatures (that is, below 60°C). The results showed that our MN-PCR method detected as little as 1 fg of target bacterial DNA in a 20-μL reaction volume, whereas conventional multiplex PCR detected a minimum of 1 pg only. Compared with traditional multiplex PCR assays, our MN-PCR system is an effective and efficient culture-free process.

References

  1. Biotechniques. 1997 Sep;23(3):504-11 [PMID: 9298224]
  2. Trends Biotechnol. 2016 Jan;34(1):7-25 [PMID: 26506111]
  3. J Clin Microbiol. 2018 Jan 24;56(2): [PMID: 29237781]
  4. Biosens Bioelectron. 2016 Aug 15;82:71-7 [PMID: 27040944]
  5. Expert Rev Mol Diagn. 2011 Mar;11(2):159-69 [PMID: 21405967]
  6. J Virol Methods. 2013 Nov;193(2):374-8 [PMID: 23872268]
  7. J Microbiol Methods. 2013 Nov;95(2):256-61 [PMID: 24055385]
  8. Clin Microbiol Rev. 2000 Oct;13(4):559-70 [PMID: 11023957]
  9. J Am Assoc Lab Anim Sci. 2020 Mar 1;59(2):156-162 [PMID: 32075699]
  10. Biosens Bioelectron. 2019 Aug 1;138:111302 [PMID: 31112917]
  11. Anal Chem. 2018 May 1;90(9):5512-5520 [PMID: 29595252]
  12. Microorganisms. 2020 Jul 17;8(7): [PMID: 32708870]
  13. Microorganisms. 2019 May 13;7(5): [PMID: 31086084]
  14. Int J Parasitol. 2014 Dec;44(14):1105-13 [PMID: 25229177]
  15. Front Microbiol. 2020 Jan 10;10:2920 [PMID: 31998253]
  16. Chem Commun (Camb). 2012 Sep 7;48(69):8712-4 [PMID: 22828803]
  17. PLoS One. 2020 Jun 12;15(6):e0234682 [PMID: 32530929]
  18. J Am Assoc Lab Anim Sci. 2016 Jan;55(1):58-65 [PMID: 26817981]
  19. J Am Assoc Lab Anim Sci. 2017 Mar 1;56(2):202-209 [PMID: 28315652]
  20. Anim Microbiome. 2021 Jul 29;3(1):53 [PMID: 34325744]
  21. Biosens Bioelectron. 2016 Jun 15;80:666-673 [PMID: 26908184]
  22. Analyst. 2019 Jan 14;144(2):396-411 [PMID: 30468217]
  23. Clin Chem. 2015 Jan;61(1):145-53 [PMID: 25320377]
  24. J Cell Mol Med. 2019 Nov;23(11):7143-7150 [PMID: 31475453]
  25. J Mol Diagn. 2013 Jan;15(1):110-5 [PMID: 23159592]
  26. Nat Rev Microbiol. 2013 Aug;11(8):574-85 [PMID: 24020074]
  27. J Am Assoc Lab Anim Sci. 2020 Jan 1;59(1):58-66 [PMID: 31862019]

MeSH Term

Animals
DNA Primers
DNA, Bacterial
DNA, Ribosomal
Multiplex Polymerase Chain Reaction
Rodentia
Sensitivity and Specificity

Chemicals

DNA Primers
DNA, Bacterial
DNA, Ribosomal

Word Cloud

Created with Highcharts 10.0.0PCRprimersMN-PCRsequenceshighmultiplexnestedmultiplefirst16SrDNAtargetstageSPFuniversalspecies-specificusingamplificationdetected1testingincreasinglyimportantmicrobialcontrolfacilitiesHowevercurrentmethodstimeconsumingrequirecompromisesensitivitymultiplexingdevelopedone-tubestrategysimultaneousdirectwithoutculturingdetectionpathogensalignedgenesselectedbacteriapanelcloselyrelatedorganismsdatadesignedpairsetsamplifymodifiedincludevariousdegeneratebaseslockednucleicacidssingletubeamplifiedtemperature65°Cproceduretarget-species-specificsupportdueshortlengthadditionconcentrationadjustedensureconsumedyieldvisiblebandssecondenrichedservedtemplatesfragmentslowannealingtemperatures60°CresultsshowedmethodlittlefgbacterialDNA20-μLreactionvolumewhereasconventionalminimumpgComparedtraditionalassayssystemeffectiveefficientculture-freeprocessSingle-tubeMultiplexNestedSystemEfficientDetectionPathogenicMicroorganismsRodents

Similar Articles

Cited By