Delineating COVID-19 immunological features using single-cell RNA sequencing.

Wendao Liu, Johnathan Jia, Yulin Dai, Wenhao Chen, Guangsheng Pei, Qiheng Yan, Zhongming Zhao
Author Information
  1. Wendao Liu: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
  2. Johnathan Jia: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
  3. Yulin Dai: Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  4. Wenhao Chen: Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute and Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
  5. Guangsheng Pei: Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  6. Qiheng Yan: Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  7. Zhongming Zhao: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.

Abstract

Understanding the molecular mechanisms of coronavirus disease 2019 (COVID-19) pathogenesis and immune response is vital for developing therapies. Single-cell RNA sequencing has been applied to delineate the cellular heterogeneity of the host response toward COVID-19 in multiple tissues and organs. Here, we review the applications and findings from over 80 original COVID-19 single-cell RNA sequencing studies as well as many secondary analysis studies. We describe that single-cell RNA sequencing reveals multiple features of COVID-19 patients with different severity, including cell populations with proportional alteration, COVID-19-induced genes and pathways, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in single cells, and adaptation of immune repertoire. We also collect published single-cell RNA sequencing datasets from original studies. Finally, we discuss the limitations in current studies and perspectives for future advance.

References

  1. Cell. 2020 Jul 9;182(1):73-84.e16 [PMID: 32425270]
  2. Front Microbiol. 2020 Oct 16;11:603509 [PMID: 33178176]
  3. Nat Commun. 2021 Feb 17;12(1):1088 [PMID: 33597522]
  4. Cell. 2021 Jun 10;184(12):3205-3221.e24 [PMID: 34015271]
  5. Comput Biol Med. 2021 Oct;137:104792 [PMID: 34478921]
  6. Front Immunol. 2021 Jul 12;12:701085 [PMID: 34322127]
  7. Protein Cell. 2020 Oct;11(10):740-770 [PMID: 32780218]
  8. Immunity. 2021 Jan 12;54(1):164-175.e6 [PMID: 33382973]
  9. N Engl J Med. 2020 Oct 15;383(16):1522-1534 [PMID: 32558485]
  10. Sci Immunol. 2021 Mar 4;6(57): [PMID: 33664060]
  11. J Clin Invest. 2021 Jul 1;131(13): [PMID: 34003804]
  12. Nature. 2021 Mar;591(7848):124-130 [PMID: 33494096]
  13. Cell Res. 2020 Sep;30(9):763-778 [PMID: 32541867]
  14. Nat Commun. 2021 Jul 27;12(1):4567 [PMID: 34315893]
  15. Nature. 2020 Oct;586(7830):509-515 [PMID: 32967005]
  16. Nat Med. 2021 May;27(5):904-916 [PMID: 33879890]
  17. Cell. 2020 May 14;181(4):914-921.e10 [PMID: 32330414]
  18. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  19. Vaccines (Basel). 2021 Apr 01;9(4): [PMID: 33916180]
  20. Sci Immunol. 2020 Jul 10;5(49): [PMID: 32651212]
  21. Nat Commun. 2021 Feb 17;12(1):1089 [PMID: 33597528]
  22. Immunity. 2021 Jun 8;54(6):1290-1303.e7 [PMID: 34022127]
  23. Cell Discov. 2021 Sep 28;7(1):89 [PMID: 34580278]
  24. Cell Prolif. 2020 Dec;53(12):e12931 [PMID: 33094537]
  25. Nat Methods. 2020 Feb;17(2):159-162 [PMID: 31819264]
  26. Nat Commun. 2021 Mar 5;12(1):1428 [PMID: 33674591]
  27. Immunity. 2020 Sep 15;53(3):685-696.e3 [PMID: 32783921]
  28. Nat Commun. 2022 Feb 3;13(1):679 [PMID: 35115549]
  29. Cell Res. 2021 Mar;31(3):272-290 [PMID: 33473155]
  30. Cell. 2021 Nov 11;184(23):5838 [PMID: 34767776]
  31. Sci Transl Med. 2021 Jan 27;13(578): [PMID: 33431511]
  32. Precis Clin Med. 2021 Aug 28;4(4):215-230 [PMID: 34993416]
  33. Immunity. 2021 Nov 9;54(11):2650-2669.e14 [PMID: 34592166]
  34. Immunity. 2021 Apr 13;54(4):797-814.e6 [PMID: 33765436]
  35. Nat Biotechnol. 2019 May;37(5):547-554 [PMID: 30936559]
  36. Cell. 2021 Apr 1;184(7):1836-1857.e22 [PMID: 33713619]
  37. iScience. 2022 May 20;25(5):104311 [PMID: 35502318]
  38. Genes (Basel). 2021 Apr 24;12(5): [PMID: 33923155]
  39. Sci China Life Sci. 2021 Oct;64(10):1634-1644 [PMID: 33564978]
  40. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34535795]
  41. Cell. 2020 Nov 25;183(5):1340-1353.e16 [PMID: 33096020]
  42. Nat Commun. 2021 Jun 9;12(1):3501 [PMID: 34108465]
  43. Immunity. 2020 Dec 15;53(6):1296-1314.e9 [PMID: 33296687]
  44. Signal Transduct Target Ther. 2021 May 17;6(1):195 [PMID: 34001847]
  45. Nat Immunol. 2021 Mar;22(3):322-335 [PMID: 33531712]
  46. Am J Pathol. 2021 Dec;191(12):2064-2071 [PMID: 34506752]
  47. Cell Metab. 2021 Aug 3;33(8):1577-1591.e7 [PMID: 34081913]
  48. Nature. 2021 Jul;595(7865):114-119 [PMID: 33915568]
  49. Nature. 2021 Mar;591(7848):92-98 [PMID: 33307546]
  50. BMC Genomics. 2021 Feb 18;22(1):125 [PMID: 33602138]
  51. J Exp Med. 2021 Aug 2;218(8): [PMID: 34128959]
  52. Front Microbiol. 2021 Aug 31;12:626553 [PMID: 34531831]
  53. Cell Discov. 2021 Aug 4;7(1):60 [PMID: 34349096]
  54. Immunity. 2021 Mar 9;54(3):542-556.e9 [PMID: 33631118]
  55. Mol Syst Biol. 2021 Apr;17(4):e10232 [PMID: 33904651]
  56. Front Immunol. 2021 Feb 24;12:625881 [PMID: 33717140]
  57. Chin Med J (Engl). 2020 May 5;133(9):1087-1095 [PMID: 32358325]
  58. Cell Stem Cell. 2015 Feb 5;16(2):184-97 [PMID: 25658372]
  59. Med. 2021 Sep 10;2(9):1072-1092.e7 [PMID: 34414385]
  60. Cell. 2020 Dec 10;183(6):1479-1495.e20 [PMID: 33171100]
  61. Nat Med. 2020 Jul;26(7):1070-1076 [PMID: 32514174]
  62. Cell. 2020 Jun 25;181(7):1475-1488.e12 [PMID: 32479746]
  63. Cell Rep Med. 2021 Jun 15;2(6):100313 [PMID: 34056628]
  64. Immunity. 2021 May 11;54(5):1083-1095.e7 [PMID: 33891889]
  65. J Clin Invest. 2021 Oct 15;131(20): [PMID: 34449440]
  66. PLoS Biol. 2021 Mar 17;19(3):e3001143 [PMID: 33730024]
  67. Hum Genet. 2021 Sep;140(9):1313-1328 [PMID: 34155559]
  68. Signal Transduct Target Ther. 2021 Sep 16;6(1):342 [PMID: 34531370]
  69. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  70. Cell. 2020 Sep 17;182(6):1401-1418.e18 [PMID: 32810439]
  71. Alzheimers Res Ther. 2021 Jun 9;13(1):110 [PMID: 34108016]
  72. Stem Cell Reports. 2021 Sep 14;16(9):2274-2288 [PMID: 34403650]
  73. Nature. 2021 Feb;590(7847):635-641 [PMID: 33429418]
  74. Nat Biotechnol. 2020 Aug;38(8):970-979 [PMID: 32591762]
  75. Cell Discov. 2020 May 4;6:31 [PMID: 32377375]
  76. Cell Rep. 2021 May 25;35(8):109173 [PMID: 33991510]
  77. Signal Transduct Target Ther. 2021 Mar 6;6(1):110 [PMID: 33677468]
  78. Eur J Immunol. 2021 Nov;51(11):2651-2664 [PMID: 34424997]
  79. Nature. 2021 Jul;595(7865):107-113 [PMID: 33915569]
  80. Sci Rep. 2021 Jul 8;11(1):14151 [PMID: 34239034]
  81. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  82. Nat Cell Biol. 2021 May;23(5):538-551 [PMID: 33972731]
  83. Cell. 2021 Sep 2;184(18):4713-4733.e22 [PMID: 34352228]
  84. Nat Protoc. 2020 Apr;15(4):1484-1506 [PMID: 32103204]
  85. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 34015809]
  86. Cell Rep Med. 2021 May 18;2(5):100288 [PMID: 33969321]
  87. Brief Bioinform. 2021 Mar 22;22(2):988-1005 [PMID: 33341869]
  88. Nature. 2021 Jul;595(7868):565-571 [PMID: 34153974]
  89. Nat Commun. 2021 Jul 26;12(1):4515 [PMID: 34312385]
  90. iScience. 2021 Mar 19;24(3):102151 [PMID: 33585804]
  91. Cell Discov. 2020 Oct 20;6:73 [PMID: 33101705]
  92. Theranostics. 2021 Jul 6;11(16):8076-8091 [PMID: 34335981]
  93. Sci Transl Med. 2021 Sep 22;13(612):eabh2624 [PMID: 34429372]
  94. Nat Immunol. 2020 Sep;21(9):1107-1118 [PMID: 32788748]

Grants

  1. R01 DE029818/NIDCR NIH HHS
  2. R01 DE030122/NIDCR NIH HHS
  3. R01 LM012806/NLM NIH HHS

Word Cloud

Created with Highcharts 10.0.0COVID-19RNAsequencingsingle-cellstudiesimmuneresponsemultipleoriginalfeaturesUnderstandingmolecularmechanismscoronavirusdisease2019pathogenesisvitaldevelopingtherapiesSingle-cellapplieddelineatecellularheterogeneityhosttowardtissuesorgansreviewapplicationsfindings80wellmanysecondaryanalysisdescriberevealspatientsdifferentseverityincludingcellpopulationsproportionalalterationCOVID-19-inducedgenespathwayssevereacuterespiratorysyndromecoronavirus-2SARS-CoV-2infectionsinglecellsadaptationrepertoirealsocollectpublisheddatasetsFinallydiscusslimitationscurrentperspectivesfutureadvanceDelineatingimmunologicalusing

Similar Articles

Cited By