Machine Learning Guided Discovery of Non-Hemolytic Membrane Disruptive Anticancer Peptides.

Elena Zakharova, Markus Orsi, Alice Capecchi, Jean-Louis Reymond
Author Information
  1. Elena Zakharova: Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
  2. Markus Orsi: Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
  3. Alice Capecchi: Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
  4. Jean-Louis Reymond: Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland. ORCID

Abstract

Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic ��-helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non-hemolytic from hemolytic AMPs and ACPs to discover new non-hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty-three peptides resulted in eleven active ACPs, four of which were non-hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non-hemolytic ACPs.

Keywords

References

  1. Bioinformatics. 2008 Sep 15;24(18):2101-2 [PMID: 18662927]
  2. J Cheminform. 2020 Feb 12;12(1):12 [PMID: 33431043]
  3. J Cheminform. 2020 Jun 12;12(1):43 [PMID: 33431010]
  4. Oncotarget. 2017 Aug 19;8(44):77121-77136 [PMID: 29100375]
  5. J Bioenerg Biomembr. 2020 Oct;52(5):321-342 [PMID: 32715369]
  6. Genes (Basel). 2018 Mar 13;9(3): [PMID: 29534013]
  7. Oncotarget. 2016 Mar 29;7(13):16895-909 [PMID: 26942877]
  8. J Mol Model. 2021 Feb 4;27(3):71 [PMID: 33543405]
  9. Peptides. 2012 Jan;33(1):18-26 [PMID: 22100226]
  10. Acc Chem Res. 2021 May 4;54(9):2196-2204 [PMID: 33844916]
  11. Sci Rep. 2020 Oct 6;10(1):16581 [PMID: 33024236]
  12. Nucleic Acids Res. 2021 Jan 8;49(D1):D288-D297 [PMID: 33151284]
  13. Chem Phys Lipids. 2011 Nov;164(8):766-81 [PMID: 21945565]
  14. J Chem Inf Model. 2020 Jan 27;60(1):121-132 [PMID: 31868369]
  15. ChemMedChem. 2018 Jul 6;13(13):1300-1302 [PMID: 29679519]
  16. J Comput Chem. 2018 Oct 5;39(26):2210-2216 [PMID: 30368831]
  17. Sci Rep. 2016 Mar 08;6:22843 [PMID: 26953092]
  18. FEMS Microbiol Lett. 2014 Aug;357(1):63-8 [PMID: 24888447]
  19. Drug Discov Today. 2018 Aug;23(8):1538-1546 [PMID: 29750902]
  20. Acta Pharm Sin B. 2021 Sep;11(9):2609-2644 [PMID: 34589385]
  21. BMC Bioinformatics. 2019 Sep 6;20(1):456 [PMID: 31492094]
  22. Sci Rep. 2019 Aug 2;9(1):11282 [PMID: 31375699]
  23. J Chem Inf Model. 2021 Jul 26;61(7):3172-3196 [PMID: 34165973]
  24. Chembiochem. 2009 Aug 17;10(12):2089-99 [PMID: 19591185]
  25. RSC Chem Biol. 2021 Aug 20;2(6):1608-1617 [PMID: 34977576]
  26. J Theor Biol. 2014 Jan 21;341:34-40 [PMID: 24035842]
  27. Bioinformatics. 2018 Apr 15;34(8):1433-1435 [PMID: 29186333]
  28. Nature. 1982 Sep 23;299(5881):371-4 [PMID: 7110359]
  29. FEMS Microbiol Rev. 2016 Jan;40(1):133-59 [PMID: 25862689]
  30. Nat Rev Drug Discov. 2018 Feb;17(2):97-113 [PMID: 29242609]
  31. Artif Intell Med. 2017 Jun;79:62-70 [PMID: 28655440]
  32. Nat Chem Biol. 2020 Jun;16(6):644-652 [PMID: 32367017]
  33. Nucleic Acids Res. 2015 Jan;43(Database issue):D837-43 [PMID: 25270878]
  34. Angew Chem Int Ed Engl. 2014 Nov 17;53(47):12827-31 [PMID: 25346278]
  35. Interface Focus. 2017 Dec 6;7(6):20160153 [PMID: 29147555]
  36. Front Microbiol. 2013 Oct 01;4:294 [PMID: 24101917]
  37. Mol Cancer Ther. 2011 Mar;10(3):416-26 [PMID: 21252288]
  38. Digit Discov. 2022 Mar 31;1(3):195-208 [PMID: 35769205]
  39. Int J Mol Sci. 2021 Mar 11;22(6): [PMID: 33799744]
  40. Chem Sci. 2021 Jun 7;12(26):9221-9232 [PMID: 34349895]
  41. Molecules. 2019 May 22;24(10): [PMID: 31121946]
  42. Sensors (Basel). 2021 Sep 24;21(19): [PMID: 34640704]
  43. Microbiol Immunol. 2017 Nov;61(11):474-481 [PMID: 28892177]
  44. Int J Mol Sci. 2021 Oct 28;22(21): [PMID: 34769122]
  45. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W668-73 [PMID: 15215473]
  46. Biochem Biophys Res Commun. 2013 Jan 4;430(1):1-6 [PMID: 23159628]
  47. Bioinformatics. 2018 Dec 1;34(23):4007-4016 [PMID: 29868903]
  48. Sci Rep. 2016 Sep 27;6:33910 [PMID: 27670968]
  49. Sci Rep. 2020 Jul 2;10(1):10869 [PMID: 32616760]
  50. ChemMedChem. 2022 Sep 5;17(17):e202200291 [PMID: 35880810]
  51. Drug Discov Today. 2018 Jun;23(6):1241-1250 [PMID: 29366762]

MeSH Term

Antineoplastic Agents
Cell Death
Hemolysis
Humans
Machine Learning

Chemicals

Antineoplastic Agents

Word Cloud

Created with Highcharts 10.0.0ACPspeptidesnon-hemolyticRNNAMPsanticancerhemolyticactivediscoverysequencegeneticalgorithmmachinelearningantimicrobialfoldmembranedisruptivecationicamphiphilic��-helicesmanyhoweveralsounpredictablytoxicexploitedabilityrecurrentneuralnetworksdistinguishinactivediscovernewpipelineinvolved:1generationusingeithergenerative2classificationactivityhemolysis3selectionnoveltyhelicityamphiphilicity4synthesistestingExperimentalevaluationthirty-threeresultedelevenfourpropertiesresemblingnaturalACPlasioglossinIIIexperimentsshowfirstexampledirectguidedMachineLearningGuidedDiscoveryNon-HemolyticMembraneDisruptiveAnticancerPeptideschemicalspacepeptidedesign

Similar Articles

Cited By