Estimating Permutation Entropy Variability via Surrogate Time Series.

Leonardo Ricci, Alessio Perinelli
Author Information
  1. Leonardo Ricci: Department of Physics, University of Trento, 38123 Trento, Italy. ORCID
  2. Alessio Perinelli: Department of Physics, University of Trento, 38123 Trento, Italy. ORCID

Abstract

In the last decade permutation entropy (PE) has become a popular tool to analyze the degree of randomness within a time series. In typical applications, changes in the dynamics of a source are inferred by observing changes of PE computed on different time series generated by that source. However, most works neglect the crucial question related to the statistical significance of these changes. The main reason probably lies in the difficulty of assessing, out of a single time series, not only the PE value, but also its uncertainty. In this paper we propose a method to overcome this issue by using generation of surrogate time series. The analysis conducted on both synthetic and experimental time series shows the reliability of the approach, which can be promptly implemented by means of widely available numerical tools. The method is computationally affordable for a broad range of users.

Keywords

References

  1. Front Netw Physiol. 2022 Jan 28;1:765332 [PMID: 36925567]
  2. Chaos. 2021 Jul;31(7):073106 [PMID: 34340343]
  3. Chaos. 2018 Oct;28(10):106307 [PMID: 30384619]
  4. Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49 [PMID: 10843903]
  5. Chaos. 2021 May;31(5):053122 [PMID: 34240945]
  6. Sleep. 2021 Apr 9;44(4): [PMID: 33159205]
  7. Entropy (Basel). 2019 Jul 24;21(8): [PMID: 33267434]
  8. Phys Rev E. 2021 Aug;104(2-1):024220 [PMID: 34525589]
  9. Chaos. 2019 Dec;29(12):121102 [PMID: 31893657]
  10. Nature. 2016 Aug 11;536(7615):171-178 [PMID: 27437579]
  11. Chaos. 2020 Jul;30(7):073120 [PMID: 32752635]
  12. Neuroimage. 2022 Aug 1;256:119247 [PMID: 35477019]
  13. Comput Methods Programs Biomed. 2021 Jul;206:106116 [PMID: 33957376]
  14. Entropy (Basel). 2020 Jan 09;22(1): [PMID: 33285854]
  15. Phys Rev E. 2017 May;95(5-1):052126 [PMID: 28618474]
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Oct;70(4 Pt 2):046217 [PMID: 15600505]
  17. Phys Rev Lett. 2002 Apr 29;88(17):174102 [PMID: 12005759]
  18. Sci Data. 2019 Feb 12;6:180308 [PMID: 30747911]
  19. Entropy (Basel). 2019 May 28;21(6): [PMID: 33267255]
  20. Entropy (Basel). 2021 Dec 28;24(1): [PMID: 35052080]
  21. Chaos. 2018 Jun;28(6):063127 [PMID: 29960408]
  22. Opt Express. 2014 Jul 28;22(15):17840-53 [PMID: 25089405]
  23. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021906 [PMID: 22463243]
  24. Chaos. 1999 Jun;9(2):413-435 [PMID: 12779839]
  25. Phys Rev Lett. 1996 Jul 22;77(4):635-638 [PMID: 10062864]
  26. Front Comput Neurosci. 2010 Sep 22;4:127 [PMID: 21060802]
  27. Chaos. 2021 Jun;31(6):063110 [PMID: 34241315]
  28. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Jun;53(6):5793-5799 [PMID: 9964937]
  29. Phys Rev E. 2021 Feb;103(2-1):022215 [PMID: 33736022]
  30. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2297-301 [PMID: 11607165]
  31. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 1):051139 [PMID: 23004735]
  32. J Neurophysiol. 2009 Mar;101(3):1126-40 [PMID: 19129298]
  33. Phys Rev Lett. 2017 Apr 7;118(14):144101 [PMID: 28430461]
  34. Sci Rep. 2016 Nov 24;6:37733 [PMID: 27883050]
  35. Entropy (Basel). 2020 Jan 06;22(1): [PMID: 33285851]
  36. Comput Biol Med. 2012 Mar;42(3):319-27 [PMID: 21511252]

Word Cloud

Created with Highcharts 10.0.0timeseriesPEchangespermutationentropysourceuncertaintymethodgenerationsurrogatelastdecadebecomepopulartoolanalyzedegreerandomnesswithintypicalapplicationsdynamicsinferredobservingcomputeddifferentgeneratedHoweverworksneglectcrucialquestionrelatedstatisticalsignificancemainreasonprobablyliesdifficultyassessingsinglevaluealsopaperproposeovercomeissueusinganalysisconductedsyntheticexperimentalshowsreliabilityapproachcanpromptlyimplementedmeanswidelyavailablenumericaltoolscomputationallyaffordablebroadrangeusersEstimatingPermutationEntropyVariabilityviaSurrogateTimeSeriesestimation

Similar Articles

Cited By