Ultrasonic Processing of Food Waste to Generate Value-Added Products.

Yue Wu, Shunyu Yao, Bhakti Anand Narale, Akalya Shanmugam, Srinivas Mettu, Muthupandian Ashokkumar
Author Information
  1. Yue Wu: Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia.
  2. Shunyu Yao: Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia. ORCID
  3. Bhakti Anand Narale: Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Thanjavur 613005, India.
  4. Akalya Shanmugam: Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Thanjavur 613005, India.
  5. Srinivas Mettu: Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia. ORCID
  6. Muthupandian Ashokkumar: Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia. ORCID

Abstract

Ultrasonic processing has a great potential to transform waste from the food and agriculture industry into value-added products. In this review article, we discuss the use of ultrasound for the valorisation of food and agricultural waste. Ultrasonic processing is considered a green technology as compared to the conventional chemical extraction/processing methods. The influence of ultrasound pre-treatment on the soluble chemical oxygen demand (SCOD), particle size, and cell wall content of food waste is first discussed. The use of ultrasonic processing to produce/extract bioactives such as oil, polyphenolic, polysaccharides, fatty acids, organic acids, protein, lipids, and enzymes is highlighted. Moreover, ultrasonic processing in bioenergy production from food waste such as green methane, hydrogen, biodiesel, and ethanol through anaerobic digestion is also reviewed. The conversion of waste oils into biofuels with the use of ultrasound is presented. The latest developments and future prospective on the use of ultrasound in developing energy-efficient methods to convert food and agricultural waste into value-added products are summarised.

Keywords

References

  1. Environ Technol. 2017 Mar;38(6):682-686 [PMID: 27373465]
  2. Ultrason Sonochem. 2012 May;19(3):596-600 [PMID: 21962478]
  3. Bioresour Technol. 2014 Feb;154:74-9 [PMID: 24384312]
  4. Carbohydr Polym. 2017 Feb 10;157:962-970 [PMID: 27988015]
  5. J Environ Manage. 2017 Feb 1;187:537-549 [PMID: 27865731]
  6. Bioresour Technol. 2021 Dec;342:126010 [PMID: 34852446]
  7. Biotechnol Prog. 2016 Mar;32(2):393-403 [PMID: 26749037]
  8. Food Res Int. 2018 Nov;113:245-262 [PMID: 30195519]
  9. Bioresour Technol. 2018 Nov;268:568-576 [PMID: 30125860]
  10. ACS Chem Biol. 2021 Nov 19;16(11):2087-2102 [PMID: 34709792]
  11. Waste Manag. 2014 Jul;34(7):1165-70 [PMID: 24709441]
  12. Bioresour Technol. 2016 Aug;213:58-63 [PMID: 26949055]
  13. Ultrason Sonochem. 2013 May;20(3):931-6 [PMID: 23231941]
  14. J Food Sci Technol. 2012 Jun;49(3):255-66 [PMID: 23729846]
  15. Food Chem. 2013 Nov 15;141(2):934-9 [PMID: 23790870]
  16. Food Chem. 2015 Jul 1;178:106-14 [PMID: 25704690]
  17. Bioresour Technol. 2002 Sep;84(2):113-8 [PMID: 12139327]
  18. Ultrason Sonochem. 2015 Jan;22:565-72 [PMID: 24880765]
  19. Ultrason Sonochem. 2016 Mar;29:568-76 [PMID: 26142078]
  20. Ultrason Sonochem. 2008 Sep;15(6):1062-8 [PMID: 18534894]
  21. Bioresour Technol. 2011 Sep;102(17):7815-26 [PMID: 21727004]
  22. Ultrason Sonochem. 2005 Jan;12(1-2):115-20 [PMID: 15474963]
  23. Food Res Int. 2019 May;119:455-461 [PMID: 30884677]
  24. Ultrason Sonochem. 2018 Nov;48:432-440 [PMID: 30080570]
  25. Ultrason Sonochem. 2019 May;53:77-82 [PMID: 30642800]
  26. Biotechnol Bioeng. 2008 Oct 15;101(3):487-96 [PMID: 18454502]
  27. Bioresour Technol. 2011 Jun;102(11):6449-57 [PMID: 21498070]
  28. Ultrason Sonochem. 2002 Oct;9(5):231-6 [PMID: 12371198]
  29. Ultrason Sonochem. 2021 Jan;70:105325 [PMID: 32920300]
  30. Nat Prod Res. 2011 Jun;25(10):974-81 [PMID: 21644177]
  31. Int J Biol Macromol. 2017 Jan;94(Pt A):335-344 [PMID: 27751809]
  32. Molecules. 2020 Jun 30;25(13): [PMID: 32629805]
  33. Bioresour Technol. 2017 Jan;224:680-687 [PMID: 27866804]
  34. J Food Sci. 2020 Jun;85(6):1668-1674 [PMID: 32458493]
  35. Environ Sci Pollut Res Int. 2018 Jan;25(1):191-199 [PMID: 29124645]
  36. Ultrason Sonochem. 2017 Mar;35(Pt A):161-175 [PMID: 27671519]
  37. Waste Manag. 2012 Mar;32(3):542-9 [PMID: 22088959]
  38. Bioresour Technol. 2012 May;112:293-9 [PMID: 22418083]
  39. Int J Biol Macromol. 2020 Dec 15;165(Pt A):776-786 [PMID: 33010269]
  40. Bioresour Technol. 2011 Jul;102(14):7119-23 [PMID: 21570831]
  41. Ultrason Sonochem. 2019 Nov;58:104598 [PMID: 31450331]
  42. Ultrason Sonochem. 2020 Dec;69:105254 [PMID: 32707459]
  43. Molecules. 2021 Aug 12;26(16): [PMID: 34443475]
  44. Food Chem. 2019 Jun 15;283:637-645 [PMID: 30722922]
  45. Ultrason Sonochem. 2019 Dec;59:104755 [PMID: 31479890]
  46. Chemosphere. 2022 Feb;288(Pt 3):132604 [PMID: 34678338]
  47. Ultrason Sonochem. 2014 Jan;21(1):216-25 [PMID: 23978705]
  48. Bioresour Technol. 2014 Mar;155:266-71 [PMID: 24457300]
  49. Ultrason Sonochem. 2021 Nov 29;81:105853 [PMID: 34861557]
  50. Int J Biol Macromol. 2020 Jun 1;152:1274-1282 [PMID: 31751688]
  51. Waste Manag. 2016 Feb;48:209-217 [PMID: 26586420]
  52. J Environ Manage. 2018 Jul 1;217:797-804 [PMID: 29660705]
  53. Ultrason Sonochem. 2017 May;36:336-342 [PMID: 28069218]
  54. Bioresour Technol. 2017 Oct;242:146-151 [PMID: 28286012]
  55. Bioresour Technol. 2016 Oct;218:69-76 [PMID: 27347800]
  56. J Chromatogr. 1990 Jan 19;499:177-96 [PMID: 2324207]
  57. Carbohydr Polym. 2019 Oct 15;222:114992 [PMID: 31320048]
  58. Food Chem. 2021 Oct 30;360:130057 [PMID: 34029924]
  59. Ultrason Sonochem. 2017 Jan;34:540-560 [PMID: 27773280]
  60. J Environ Manage. 2021 May 1;285:112098 [PMID: 33578212]
  61. J Sci Food Agric. 2016 Aug;96(10):3484-91 [PMID: 26572692]
  62. Food Chem. 2016 May 1;198:125-31 [PMID: 26769514]
  63. Foods. 2021 Jan 30;10(2): [PMID: 33573135]
  64. Int J Biol Macromol. 2014 Sep;70:530-6 [PMID: 25064556]
  65. Antioxidants (Basel). 2019 Jul 31;8(8): [PMID: 31370335]
  66. Biotechnol Bioeng. 2007 Dec 1;98(5):978-85 [PMID: 17514753]
  67. Plant Physiol. 1994 Apr;104(4):1113-1118 [PMID: 12232152]
  68. Carbohydr Polym. 2017 Sep 15;172:102-112 [PMID: 28606515]
  69. J Sci Food Agric. 2020 Jun;100(8):3498-3506 [PMID: 32227353]
  70. Biotechnol Biofuels. 2010 May 24;3:10 [PMID: 20497524]
  71. Adv Drug Deliv Rev. 2021 May;172:9-36 [PMID: 33705877]
  72. Bioresour Technol. 2018 Sep;264:35-41 [PMID: 29783129]
  73. Food Chem. 2019 Nov 1;297:124994 [PMID: 31253277]
  74. Crit Rev Food Sci Nutr. 2020;60(8):1388-1416 [PMID: 30740995]
  75. Prostaglandins Leukot Essent Fatty Acids. 2009 Nov-Dec;81(5-6):417-23 [PMID: 19744844]
  76. Water Res. 2007 Dec;41(20):4741-7 [PMID: 17688907]
  77. Foods. 2018 Oct 04;7(10): [PMID: 30287795]

Word Cloud

Created with Highcharts 10.0.0wastefoodprocessingultrasounduseUltrasonicproductsvalue-addedagriculturalgreenchemicalmethodsultrasonicacidsgreatpotentialtransformagricultureindustryreviewarticlediscussvalorisationconsideredtechnologycomparedconventionalextraction/processinginfluencepre-treatmentsolubleoxygendemandSCODparticlesizecellwallcontentfirstdiscussedproduce/extractbioactivesoilpolyphenolicpolysaccharidesfattyorganicproteinlipidsenzymeshighlightedMoreoverbioenergyproductionmethanehydrogenbiodieselethanolanaerobicdigestionalsoreviewedconversionoilsbiofuelspresentedlatestdevelopmentsfutureprospectivedevelopingenergy-efficientconvertsummarisedProcessingFoodWasteGenerateValue-AddedProductsbio-energyextractionsustainablegoals

Similar Articles

Cited By