A Radiation-Free Classification Pipeline for Craniosynostosis Using Statistical Shape Modeling.

Matthias Schaufelberger, Reinald Kühle, Andreas Wachter, Frederic Weichel, Niclas Hagen, Friedemann Ringwald, Urs Eisenmann, Jürgen Hoffmann, Michael Engel, Christian Freudlsperger, Werner Nahm
Author Information
  1. Matthias Schaufelberger: Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany. ORCID
  2. Reinald Kühle: Department of Oral, Dental and Maxillofacial Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany. ORCID
  3. Andreas Wachter: Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany. ORCID
  4. Frederic Weichel: Department of Oral, Dental and Maxillofacial Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany. ORCID
  5. Niclas Hagen: Institute of Medical Informatics, Heidelberg University Hospital, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany. ORCID
  6. Friedemann Ringwald: Institute of Medical Informatics, Heidelberg University Hospital, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany. ORCID
  7. Urs Eisenmann: Institute of Medical Informatics, Heidelberg University Hospital, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany.
  8. Jürgen Hoffmann: Department of Oral, Dental and Maxillofacial Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany. ORCID
  9. Michael Engel: Department of Oral, Dental and Maxillofacial Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
  10. Christian Freudlsperger: Department of Oral, Dental and Maxillofacial Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany. ORCID
  11. Werner Nahm: Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany. ORCID

Abstract

BACKGROUND: Craniosynostosis is a condition caused by the premature fusion of skull sutures, leading to irregular growth patterns of the head. Three-dimensional photogrammetry is a radiation-free alternative to the diagnosis using computed tomography. While statistical shape models have been proposed to quantify head shape, no shape-model-based classification approach has been presented yet.
METHODS: We present a classification pipeline that enables an automated diagnosis of three types of craniosynostosis. The pipeline is based on a statistical shape model built from photogrammetric surface scans. We made the model and pathology-specific submodels publicly available, making it the first publicly available craniosynostosis-related head model, as well as the first focusing on infants younger than 1.5 years. To the best of our knowledge, we performed the largest classification study for craniosynostosis to date.
RESULTS: Our classification approach yields an accuracy of 97.8 %, comparable to other state-of-the-art methods using both computed tomography scans and stereophotogrammetry. Regarding the statistical shape model, we demonstrate that our model performs similar to other statistical shape models of the human head.
CONCLUSION: We present a state-of-the-art shape-model-based classification approach for a radiation-free diagnosis of craniosynostosis. Our publicly available shape model enables the assessment of craniosynostosis on realistic and synthetic data.

Keywords

References

  1. Med Image Anal. 2014 May;18(4):635-46 [PMID: 24713202]
  2. Plast Reconstr Surg. 2009 Feb;123(2):635-642 [PMID: 19182624]
  3. J Neurosurg Pediatr. 2018 Nov 1;22(5):475-480 [PMID: 30074450]
  4. J Craniomaxillofac Surg. 2021 Jun;49(6):449-455 [PMID: 33712336]
  5. J Neurosurg. 1982 Sep;57(3):370-7 [PMID: 7097333]
  6. Childs Nerv Syst. 2007 Mar;23(3):269-81 [PMID: 17186250]
  7. Int J Oral Maxillofac Surg. 2017 Jul;46(7):819-826 [PMID: 28392059]
  8. Int J Oral Maxillofac Surg. 2010 Feb;39(2):115-21 [PMID: 20056390]
  9. IEEE Trans Vis Comput Graph. 2010 Jul-Aug;16(4):621-35 [PMID: 20467060]
  10. Plast Reconstr Surg. 1989 Apr;83(4):738-42 [PMID: 2648432]
  11. IEEE Trans Pattern Anal Mach Intell. 2021 Nov;43(11):4142-4160 [PMID: 32356737]
  12. Med Image Anal. 2013 Dec;17(8):959-73 [PMID: 23837968]
  13. Am J Dis Child. 1985 Jan;139(1):85-6 [PMID: 3969991]
  14. J Plast Reconstr Aesthet Surg. 2020 Apr;73(4):723-731 [PMID: 31917189]
  15. J Plast Reconstr Aesthet Surg. 2012 Sep;65(9):1246-51 [PMID: 22534123]
  16. IEEE Trans Pattern Anal Mach Intell. 2010 Dec;32(12):2262-75 [PMID: 20975122]
  17. Neuroimage. 2012 Feb 1;59(3):2155-66 [PMID: 22037419]
  18. Sci Rep. 2020 Sep 18;10(1):15346 [PMID: 32948813]
  19. Am J Med Genet A. 2008 Apr 15;146A(8):984-91 [PMID: 18344207]
  20. Int J Comput Assist Radiol Surg. 2017 Oct;12(10):1739-1749 [PMID: 28550406]
  21. Eur Radiol. 2014 Oct;24(10):2417-26 [PMID: 25038852]
  22. BMC Genomics. 2007 Dec 12;8:458 [PMID: 18076769]
  23. IEEE Trans Pattern Anal Mach Intell. 2018 Aug;40(8):1860-1873 [PMID: 28816655]
  24. Clin Radiol. 2013 Mar;68(3):284-92 [PMID: 22939693]
  25. Children (Basel). 2021 Aug 25;8(9): [PMID: 34572159]
  26. J Clin Epidemiol. 1990;43(1):69-73 [PMID: 2319283]
  27. J Craniomaxillofac Surg. 2017 Dec;45(12):2010-2016 [PMID: 29066040]
  28. Inf Process Med Imaging. 2003 Jul;18:63-75 [PMID: 15344447]
  29. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):1-8 [PMID: 20426089]
  30. J Craniomaxillofac Surg. 2016 Feb;44(2):110-5 [PMID: 26724211]

Grants

  1. HEiKA_19-17/HEiKA Strategic Partnership

Word Cloud

Created with Highcharts 10.0.0shapemodelclassificationstatisticalcraniosynostosisheaddiagnosisapproachpubliclyavailableCraniosynostosisradiation-freeusingcomputedtomographymodelsshape-model-basedpresentpipelineenablesscansfirststate-of-the-artstereophotogrammetryBACKGROUND:conditioncausedprematurefusionskullsuturesleadingirregulargrowthpatternsThree-dimensionalphotogrammetryalternativeproposedquantifypresentedyetMETHODS:automatedthreetypesbasedbuiltphotogrammetricsurfacemadepathology-specificsubmodelsmakingcraniosynostosis-relatedwellfocusinginfantsyounger15yearsbestknowledgeperformedlargeststudydateRESULTS:yieldsaccuracy978%comparablemethodsRegardingdemonstrateperformssimilarhumanCONCLUSION:assessmentrealisticsyntheticdataRadiation-FreeClassificationPipelineUsingStatisticalShapeModelingmachinelearninganalysistemplatemorphing

Similar Articles

Cited By