and Genotype Predicts Glucose Metabolism Disorder among HIV Patients on Long-Term Efavirenz-Based ART: A Case-Control Study.

Wondmagegn Tamiru Tadesse, Eulambius Mathias Mlugu, Workineh Shibeshi, Wondwossen Amogne Degu, Ephrem Engidawork, Eleni Aklillu
Author Information
  1. Wondmagegn Tamiru Tadesse: Department of Pharmacology and Clinical Pharmacology, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia. ORCID
  2. Eulambius Mathias Mlugu: Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital-Huddinge, 14186 Stockholm, Sweden.
  3. Workineh Shibeshi: Department of Pharmacology and Clinical Pharmacology, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia. ORCID
  4. Wondwossen Amogne Degu: Department of Internal Medicine, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia. ORCID
  5. Ephrem Engidawork: Department of Pharmacology and Clinical Pharmacology, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia. ORCID
  6. Eleni Aklillu: Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital-Huddinge, 14186 Stockholm, Sweden. ORCID

Abstract

Long-term antiretroviral treatment (cART) increases the risk of glucose metabolism disorders (GMDs). Genetic variation in drug-metabolizing enzymes and transporters may influence susceptibility to cART-associated GMDs. We conducted a case-control study to investigate the association of pharmacogenetic variations with cART-induced GMDs. A total of 240 HIV patients on long-term efavirenz-based cART (75 GMD cases and 165 controls without GMDs) were genotyped for CYP3A4*1B, CYP3A5 (*3,*6), CYP2B6*6, UGT2B7*2, ABCB1 (c.3435C>T, c.4036A>G), and SLCO1B1 (*1b, *5). GMD cases were defined as the presence of impaired fasting glucose, insulin resistance, or diabetes mellitus (DM). Case-control genotype/haplotype association and logistic regression analysis were performed by adjusting for age, sex, and BMI. The major CYP3A haplotype were CYP3A5*3 (53.8%), CYP3A4*1B (17.3%), combinations of CYP3A4*1B, and CYP3A5*6 (10.9%), and CYP3A wild type (7%). CYP3A5*6 allele (p = 0.005) and CYP3A5*6 genotype (p = 0.01) were significantly associated with GMD cases. Multivariate analysis indicated CYP3A haplotype as a significant predictor of GMD (p = 0.02) and IFG (p = 0.004). CYP2B6*6 significantly predicted DM (p = 0.03). CYP3A haplotype and CYP2B6*6 genotype are independent significant predictors of GMD and DM, respectively, among HIV patients on long-term EFV-based cART.

Keywords

References

Br J Pharmacol. 2010 Aug;160(8):2069-84 [PMID: 20649602]
HIV Med. 2019 Feb;20(2):147-156 [PMID: 30474906]
Pharmacogenet Genomics. 2015 Jul;25(7):363-76 [PMID: 25966836]
Front Pharmacol. 2020 Feb 07;11:26 [PMID: 32116703]
Genomics. 2008 Jun;91(6):512-6 [PMID: 18442890]
J Pers Med. 2021 Dec 05;11(12): [PMID: 34945777]
PLoS One. 2014 Apr 08;9(4):e94271 [PMID: 24714066]
Pharmacogenomics J. 2011 Apr;11(2):130-7 [PMID: 20231858]
Malar J. 2017 Jul 3;16(1):267 [PMID: 28673292]
Endocrinol Diabetes Metab. 2021 Oct;4(4):e00292 [PMID: 34505404]
J Periodontal Res. 2008 Dec;43(6):665-72 [PMID: 18702631]
BMC Infect Dis. 2013 Jun 04;13:261 [PMID: 23734829]
Pharmacogenomics. 2013 Jul;14(10):1167-78 [PMID: 23859571]
Br J Clin Pharmacol. 2009 Nov;68(5):690-9 [PMID: 19916993]
Front Pharmacol. 2017 Feb 27;8:90 [PMID: 28289388]
Medicine (Baltimore). 2016 Jan;95(2):e2385 [PMID: 26765416]
PLoS One. 2013 Jul 05;8(7):e67946 [PMID: 23861838]
Biochim Biophys Acta. 2009 May;1794(5):860-71 [PMID: 19285158]
Eur J Clin Pharmacol. 2018 Jun;74(6):723-729 [PMID: 29546446]
J Clin Med. 2019 Mar 28;8(4): [PMID: 30925831]
PLoS One. 2011;6(12):e27810 [PMID: 22162992]
Pharmacogenomics J. 2012 Dec;12(6):499-506 [PMID: 21862974]
Environ Mol Mutagen. 2003;42(4):299-305 [PMID: 14673875]
Front Genet. 2012 Nov 05;3:236 [PMID: 23133441]
Front Pharmacol. 2021 Aug 31;12:712084 [PMID: 34531744]
PLoS One. 2012;7(7):e40180 [PMID: 22808112]
Front Immunol. 2021 May 20;12:639378 [PMID: 34093527]
PLoS One. 2022 Jan 19;17(1):e0262604 [PMID: 35045105]
Biomed Pharmacother. 2022 Jun;150:112999 [PMID: 35461087]
Expert Opin Drug Saf. 2019 Sep;18(9):829-840 [PMID: 31304808]
Br J Pharmacol. 2021 Aug;178(16):3294-3308 [PMID: 33155675]
OMICS. 2017 Mar;21(3):123-131 [PMID: 28253087]
PLoS One. 2015 Aug 19;10(8):e0134410 [PMID: 26287742]
Eur J Clin Pharmacol. 2018 Nov;74(11):1405-1415 [PMID: 30003275]
Neurochem Res. 2013 Dec;38(12):2524-34 [PMID: 24091996]
Biochem Biophys Res Commun. 2005 Dec 9;338(1):299-305 [PMID: 16171783]
PLoS One. 2020 Aug 20;15(8):e0237013 [PMID: 32818950]
Int J Mol Med. 2007 Nov;20(5):703-7 [PMID: 17912464]

Grants

  1. 2015-03295/Swedish Research Council
  2. CSA2016S-1618/European and Developing Countries Clinical Trials Partnership
  3. GPO/275/12/20/Swedish International Development Cooperation Agency

Word Cloud

Similar Articles

Cited By