Wondmagegn Tamiru Tadesse, Eulambius Mathias Mlugu, Workineh Shibeshi, Wondwossen Amogne Degu, Ephrem Engidawork, Eleni Aklillu
Long-term antiretroviral treatment (cART) increases the risk of glucose metabolism disorders (GMDs). Genetic variation in drug-metabolizing enzymes and transporters may influence susceptibility to cART-associated GMDs. We conducted a case-control study to investigate the association of pharmacogenetic variations with cART-induced GMDs. A total of 240 HIV patients on long-term efavirenz-based cART (75 GMD cases and 165 controls without GMDs) were genotyped for CYP3A4*1B, CYP3A5 (*3,*6), CYP2B6*6, UGT2B7*2, ABCB1 (c.3435C>T, c.4036A>G), and SLCO1B1 (*1b, *5). GMD cases were defined as the presence of impaired fasting glucose, insulin resistance, or diabetes mellitus (DM). Case-control genotype/haplotype association and logistic regression analysis were performed by adjusting for age, sex, and BMI. The major CYP3A haplotype were CYP3A5*3 (53.8%), CYP3A4*1B (17.3%), combinations of CYP3A4*1B, and CYP3A5*6 (10.9%), and CYP3A wild type (7%). CYP3A5*6 allele (p = 0.005) and CYP3A5*6 genotype (p = 0.01) were significantly associated with GMD cases. Multivariate analysis indicated CYP3A haplotype as a significant predictor of GMD (p = 0.02) and IFG (p = 0.004). CYP2B6*6 significantly predicted DM (p = 0.03). CYP3A haplotype and CYP2B6*6 genotype are independent significant predictors of GMD and DM, respectively, among HIV patients on long-term EFV-based cART.
Br J Pharmacol. 2010 Aug;160(8):2069-84
[PMID:
20649602]
HIV Med. 2019 Feb;20(2):147-156
[PMID:
30474906]
Pharmacogenet Genomics. 2015 Jul;25(7):363-76
[PMID:
25966836]
Front Pharmacol. 2020 Feb 07;11:26
[PMID:
32116703]
Genomics. 2008 Jun;91(6):512-6
[PMID:
18442890]
J Pers Med. 2021 Dec 05;11(12):
[PMID:
34945777]
PLoS One. 2014 Apr 08;9(4):e94271
[PMID:
24714066]
Pharmacogenomics J. 2011 Apr;11(2):130-7
[PMID:
20231858]
Malar J. 2017 Jul 3;16(1):267
[PMID:
28673292]
Endocrinol Diabetes Metab. 2021 Oct;4(4):e00292
[PMID:
34505404]
J Periodontal Res. 2008 Dec;43(6):665-72
[PMID:
18702631]
BMC Infect Dis. 2013 Jun 04;13:261
[PMID:
23734829]
Pharmacogenomics. 2013 Jul;14(10):1167-78
[PMID:
23859571]
Br J Clin Pharmacol. 2009 Nov;68(5):690-9
[PMID:
19916993]
Front Pharmacol. 2017 Feb 27;8:90
[PMID:
28289388]
Medicine (Baltimore). 2016 Jan;95(2):e2385
[PMID:
26765416]
PLoS One. 2013 Jul 05;8(7):e67946
[PMID:
23861838]
Biochim Biophys Acta. 2009 May;1794(5):860-71
[PMID:
19285158]
Eur J Clin Pharmacol. 2018 Jun;74(6):723-729
[PMID:
29546446]
J Clin Med. 2019 Mar 28;8(4):
[PMID:
30925831]
PLoS One. 2011;6(12):e27810
[PMID:
22162992]
Pharmacogenomics J. 2012 Dec;12(6):499-506
[PMID:
21862974]
Environ Mol Mutagen. 2003;42(4):299-305
[PMID:
14673875]
Front Genet. 2012 Nov 05;3:236
[PMID:
23133441]
Front Pharmacol. 2021 Aug 31;12:712084
[PMID:
34531744]
PLoS One. 2012;7(7):e40180
[PMID:
22808112]
Front Immunol. 2021 May 20;12:639378
[PMID:
34093527]
PLoS One. 2022 Jan 19;17(1):e0262604
[PMID:
35045105]
Biomed Pharmacother. 2022 Jun;150:112999
[PMID:
35461087]
Expert Opin Drug Saf. 2019 Sep;18(9):829-840
[PMID:
31304808]
Br J Pharmacol. 2021 Aug;178(16):3294-3308
[PMID:
33155675]
OMICS. 2017 Mar;21(3):123-131
[PMID:
28253087]
PLoS One. 2015 Aug 19;10(8):e0134410
[PMID:
26287742]
Eur J Clin Pharmacol. 2018 Nov;74(11):1405-1415
[PMID:
30003275]
Neurochem Res. 2013 Dec;38(12):2524-34
[PMID:
24091996]
Biochem Biophys Res Commun. 2005 Dec 9;338(1):299-305
[PMID:
16171783]
PLoS One. 2020 Aug 20;15(8):e0237013
[PMID:
32818950]
Int J Mol Med. 2007 Nov;20(5):703-7
[PMID:
17912464]