Micellar Composition Affects Lipid Accretion Kinetics in Molecular Dynamics Simulations: Support for Lipid Network Reproduction.

Amit Kahana, Doron Lancet, Zoltan Palmai
Author Information
  1. Amit Kahana: Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 761001, Israel. ORCID
  2. Doron Lancet: Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 761001, Israel. ORCID
  3. Zoltan Palmai: Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 761001, Israel. ORCID

Abstract

Mixed lipid micelles were proposed to facilitate life through their documented growth dynamics and catalytic properties. Our previous research predicted that micellar self-reproduction involves catalyzed accretion of lipid molecules by the residing lipids, leading to compositional homeostasis. Here, we employ atomistic Molecular Dynamics simulations, beginning with 54 lipid monomers, tracking an entire course of micellar accretion. This was done to examine the self-assembly of variegated lipid clusters, allowing us to measure entry and exit rates of monomeric lipids into pre-micelles with different compositions and sizes. We observe considerable rate-modifications that depend on the assembly composition and scrutinize the underlying mechanisms as well as the energy contributions. Lastly, we describe the measured potential for compositional homeostasis in our simulated mixed micelles. This affirms the basis for micellar self-reproduction, with implications for the study of the origin of life.

Keywords

References

  1. Langmuir. 2015 Feb 3;31(4):1336-43 [PMID: 25560633]
  2. ACS Macro Lett. 2020 May 19;9(5):756-761 [PMID: 35648564]
  3. Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24 [PMID: 18216768]
  4. J Chem Phys. 2008 Jan 28;128(4):044905 [PMID: 18247998]
  5. J Phys Chem B. 2013 Jan 10;117(1):242-51 [PMID: 23231352]
  6. J Chem Theory Comput. 2018 Jan 9;14(1):303-318 [PMID: 29149564]
  7. Nat Commun. 2020 Jan 10;11(1):176 [PMID: 31924788]
  8. Nat Commun. 2014 Sep 02;5:4607 [PMID: 25178358]
  9. J R Soc Interface. 2018 Jul;15(144): [PMID: 30045888]
  10. Langmuir. 2015 Mar 17;31(10):2931-5 [PMID: 25740116]
  11. PLoS One. 2014 Jul 08;9(7):e102114 [PMID: 25004142]
  12. J Membr Biol. 2020 Dec;253(6):589-608 [PMID: 33200235]
  13. J Biol Chem. 2006 Jul 28;281(30):21566-21574 [PMID: 16737957]
  14. J Phys Chem B. 2009 Aug 6;113(31):10715-20 [PMID: 19591445]
  15. Chem Soc Rev. 2021 Nov 1;50(21):11741-11746 [PMID: 34541591]
  16. J Theor Biol. 2001 Dec 7;213(3):481-91 [PMID: 11735293]
  17. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  18. Life (Basel). 2019 Aug 21;9(3): [PMID: 31438465]
  19. Biochemistry. 2002 Apr 30;41(17):5375-82 [PMID: 11969397]
  20. J Phys Chem Lett. 2018 Sep 6;9(17):4941-4948 [PMID: 30070844]
  21. Curr Top Med Chem. 2017;17(23):2626-2641 [PMID: 28413946]
  22. Nature. 2012 Nov 1;491(7422):72-7 [PMID: 23075853]
  23. J Phys Chem B. 2005 Aug 11;109(31):15098-106 [PMID: 16852911]
  24. EMBO Rep. 2000 Sep;1(3):217-22 [PMID: 11256602]
  25. Langmuir. 2019 Nov 5;35(44):14151-14172 [PMID: 30730752]
  26. Mol Cell Endocrinol. 2019 Apr 5;485:9-19 [PMID: 30738950]
  27. Faraday Discuss. 2016 Dec 22;195:421-441 [PMID: 27727353]
  28. J Phys Colloid Chem. 1948 Jan;52(1):130-48 [PMID: 18918865]
  29. Neuron. 2018 Sep 19;99(6):1129-1143 [PMID: 30236283]
  30. J Phys Chem Lett. 2011 Jan 6;2(1):19-24 [PMID: 26295208]
  31. J Colloid Interface Sci. 2000 Oct 1;230(1):22-28 [PMID: 10998284]
  32. Mol Pharm. 2020 Nov 2;17(11):4226-4240 [PMID: 32960068]
  33. J Chem Theory Comput. 2012 Nov 13;8(11):4610-23 [PMID: 26605618]
  34. Nature. 1998 Dec 3;396(6710):447-50 [PMID: 9853750]
  35. Molecules. 2017 Dec 25;23(1): [PMID: 29295605]
  36. Nat Commun. 2016 Mar 21;7:11041 [PMID: 26996603]
  37. Phys Rev Lett. 2019 Jul 19;123(3):038003 [PMID: 31386437]
  38. J Comput Chem. 2008 Aug;29(11):1859-65 [PMID: 18351591]
  39. Sci Rep. 2020 Mar 11;10(1):4483 [PMID: 32161377]
  40. Adv Colloid Interface Sci. 2001 Jan 29;89-90:25-46 [PMID: 11215796]
  41. Adv Protein Chem Struct Biol. 2014;94:269-313 [PMID: 24629189]
  42. Life (Basel). 2019 May 10;9(2): [PMID: 31083329]
  43. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4112-7 [PMID: 10760281]
  44. Biophys J. 2014 Oct 7;107(7):1582-90 [PMID: 25296310]
  45. Nature. 2001 Jan 18;409(6818):387-90 [PMID: 11201752]
  46. Biochim Biophys Acta. 1987 May 12;899(1):104-12 [PMID: 3567187]
  47. Artif Life. 2012 Summer;18(3):243-66 [PMID: 22662913]
  48. Curr Biol. 2015 Oct 5;25(19):R953-63 [PMID: 26439358]
  49. Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10184-9 [PMID: 21646537]
  50. Magn Reson Chem. 2013 Mar;51(3):176-83 [PMID: 23364831]
  51. Orig Life Evol Biosph. 2001 Feb-Apr;31(1-2):119-45 [PMID: 11296516]
  52. ACS Omega. 2020 Oct 14;5(42):27393-27400 [PMID: 33134702]
  53. Angew Chem Int Ed Engl. 2005 Nov 11;44(44):7174-99 [PMID: 16276555]
  54. Biochemistry. 2008 Sep 2;47(35):9081-9 [PMID: 18693753]
  55. Phys Chem Chem Phys. 2013 Apr 21;15(15):5563-71 [PMID: 23463240]
  56. Biochemistry. 1996 Dec 17;35(50):16055-60 [PMID: 8973175]
  57. ChemMedChem. 2011 Sep 5;6(9):1578-80 [PMID: 21674810]
  58. J Phys Chem B. 2011 Aug 25;115(33):10098-108 [PMID: 21749127]
  59. Nat Methods. 2017 Jan;14(1):71-73 [PMID: 27819658]
  60. Life (Basel). 2017 Jan 17;7(1): [PMID: 28106741]
  61. Curr Opin Pharmacol. 2010 Dec;10(6):745-52 [PMID: 20934381]
  62. Nat Rev Chem. 2021 Dec;5(12):870-878 [PMID: 37117387]
  63. J Chem Theory Comput. 2017 Jul 11;13(7):3372-3377 [PMID: 28582625]

Grants

  1. 711473/Minerva Foundation

Word Cloud

Created with Highcharts 10.0.0lipidmicelleslifemicellaraccretionMolecularDynamicsself-reproductionlipidscompositionalhomeostasismixedoriginLipidMixedproposedfacilitatedocumentedgrowthdynamicscatalyticpropertiespreviousresearchpredictedinvolvescatalyzedmoleculesresidingleadingemployatomisticsimulationsbeginning54monomerstrackingentirecoursedoneexamineself-assemblyvariegatedclustersallowingusmeasureentryexitratesmonomericpre-micellesdifferentcompositionssizesobserveconsiderablerate-modificationsdependassemblycompositionscrutinizeunderlyingmechanismswellenergycontributionsLastlydescribemeasuredpotentialsimulatedaffirmsbasisimplicationsstudyMicellarCompositionAffectsAccretionKineticsSimulations:SupportNetworkReproductionsimulationkinetics

Similar Articles

Cited By