Individualized Prospective Prediction of Opioid Use Disorder.

Yang S Liu, Lawrence Kiyang, Jake Hayward, Yanbo Zhang, Dan Metes, Mengzhe Wang, Lawrence W Svenson, Fernanda Talarico, Pierre Chue, Xin-Min Li, Russell Greiner, Andrew J Greenshaw, Bo Cao
Author Information
  1. Yang S Liu: Department of Psychiatry, 3158University of Alberta, Edmonton, Alberta, Canada. ORCID
  2. Lawrence Kiyang: Analytics and Performance Reporting Branch, Ministry of Health, 151965Government of Alberta, Edmonton, Alberta, Canada.
  3. Jake Hayward: Department of Emergency Medicine, 3158University of Alberta, Edmonton, Alberta, Canada. ORCID
  4. Yanbo Zhang: Department of Psychiatry, 3158University of Alberta, Edmonton, Alberta, Canada. ORCID
  5. Dan Metes: Analytics and Performance Reporting Branch, Ministry of Health, 151965Government of Alberta, Edmonton, Alberta, Canada.
  6. Mengzhe Wang: Analytics and Performance Reporting Branch, Ministry of Health, 151965Government of Alberta, Edmonton, Alberta, Canada.
  7. Lawrence W Svenson: Analytics and Performance Reporting Branch, Ministry of Health, 151965Government of Alberta, Edmonton, Alberta, Canada.
  8. Fernanda Talarico: Department of Psychiatry, 3158University of Alberta, Edmonton, Alberta, Canada. ORCID
  9. Pierre Chue: Department of Psychiatry, 3158University of Alberta, Edmonton, Alberta, Canada.
  10. Xin-Min Li: Department of Psychiatry, 3158University of Alberta, Edmonton, Alberta, Canada.
  11. Russell Greiner: Department of Psychiatry, 3158University of Alberta, Edmonton, Alberta, Canada.
  12. Andrew J Greenshaw: Department of Psychiatry, 3158University of Alberta, Edmonton, Alberta, Canada.
  13. Bo Cao: Department of Psychiatry, 3158University of Alberta, Edmonton, Alberta, Canada. ORCID

Abstract

OBJECTIVE: Opioid use disorder (OUD) is a chronic relapsing disorder with a problematic pattern of opioid use, affecting nearly 27 million people worldwide. Machine learning (ML)-based prediction of OUD may lead to early detection and intervention. However, most ML prediction studies were not based on representative data sources and prospective validations, limiting their potential to predict future new cases. In the current study, we aimed to develop and validate an ML model that could predict individual OUD cases based on representative large-scale health data.
METHOD: We present an ensemble machine-learning model trained on a cross-linked Canadian administrative health data set from 2014 to 2018 (  =  699,164), with validation of model-predicted OUD cases on a hold-out sample from 2014 to 2018 (  =  174,791) and prospective prediction of OUD cases on a non-overlapping sample from 2019 (  =  316,039). We used administrative records of OUD diagnosis for each subject based on International Classification of Diseases (ICD) codes.
RESULTS: With 6409 OUD cases in 2019 (mean [SD], 45.34 [14.28], 3400 males), our model prospectively predicted OUD cases at a high accuracy (balanced accuracy, 86%, sensitivity, 93%; specificity 79%). In accord with prior findings, the top risk factors for OUD in this model were opioid use indicators and a history of other substance use disorders.
CONCLUSION: Our study presents an individualized prospective prediction of OUD cases by applying ML to large administrative health datasets. Such prospective predictions based on ML would be essential for potential future clinical applications in the early detection of OUD.

Keywords

References

  1. Am J Manag Care. 2021 Apr;27(4):148-154 [PMID: 33877773]
  2. J Pain Res. 2018 Jan 05;11:119-131 [PMID: 29379313]
  3. Prev Med. 2020 Jan;130:105886 [PMID: 31705938]
  4. Pain. 2015 Apr;156(4):569-576 [PMID: 25785523]
  5. Health Serv Res Manag Epidemiol. 2018 Jan 21;5:2333392817747467 [PMID: 29383324]
  6. BMC Public Health. 2020 Jan 31;20(1):143 [PMID: 32005211]
  7. BMC Med. 2018 May 16;16(1):69 [PMID: 29764482]
  8. AMIA Annu Symp Proc. 2018 Apr 16;2017:525-534 [PMID: 29854117]
  9. Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):1917-1923 [PMID: 31937665]
  10. Lancet Public Health. 2019 Feb;4(2):e81-e82 [PMID: 30579840]
  11. JAMA Netw Open. 2019 Mar 1;2(3):e190968 [PMID: 30901048]
  12. J Pain. 2015 Apr;16(4):380-7 [PMID: 25640294]
  13. Ann Emerg Med. 2019 Nov;74(5):634-646 [PMID: 31229388]
  14. Appl Health Econ Health Policy. 2014 Aug;12(4):435-46 [PMID: 24919646]
  15. Popul Health Manag. 2014 Dec;17(6):372-87 [PMID: 25075734]
  16. J Opioid Manag. 2013 May-Jun;9(3):161-75 [PMID: 23771567]
  17. BMC Health Serv Res. 2020 Jul 22;20(1):677 [PMID: 32698815]
  18. Nat Methods. 2018 Apr;15(4):233-234 [PMID: 30100822]
  19. JAMA. 2018 Apr 3;319(13):1317-1318 [PMID: 29532063]
  20. Health Serv Res Manag Epidemiol. 2017 Aug 24;4:2333392817717411 [PMID: 28890908]
  21. Pharmacol Res Perspect. 2020 Dec;8(6):e00669 [PMID: 33200572]
  22. Drug Alcohol Depend. 2019 Jan 1;194:151-158 [PMID: 30439611]
  23. PLoS One. 2020 Jul 17;15(7):e0235981 [PMID: 32678860]
  24. Lancet. 2019 Apr 27;393(10182):1760-1772 [PMID: 30878228]
  25. Biostatistics. 2020 Apr 1;21(2):345-352 [PMID: 31742354]
  26. J Glob Health. 2018 Dec;8(2):020303 [PMID: 30405904]
  27. Addict Sci Clin Pract. 2021 Mar 17;16(1):19 [PMID: 33731210]
  28. Med Care. 2016 Oct;54(10):901-6 [PMID: 27623005]
  29. MMWR Morb Mortal Wkly Rep. 2016 Dec 30;65(50-51):1445-1452 [PMID: 28033313]
  30. Transl Res. 2021 Aug;234:74-87 [PMID: 33762186]
  31. BioData Min. 2019 Jan 29;12:3 [PMID: 30728857]
  32. J Math Psychol. 2000 Mar;44(1):108-132 [PMID: 10733860]
  33. JAMA Psychiatry. 2019 Feb 1;76(2):208-216 [PMID: 30516809]
  34. Anesth Analg. 2017 Nov;125(5):1741-1748 [PMID: 29049118]
  35. Nat Rev Dis Primers. 2020 Jan 9;6(1):3 [PMID: 31919349]
  36. Drug Alcohol Depend. 2020 Mar 1;208:107839 [PMID: 31962227]
  37. Lancet. 2019 Oct 26;394(10208):1560-1579 [PMID: 31657732]
  38. Clin J Pain. 2008 Jul-Aug;24(6):521-7 [PMID: 18574361]
  39. Prev Med. 2018 Nov;116:112-118 [PMID: 30217407]

MeSH Term

Male
Humans
Analgesics, Opioid
Canada
Opioid-Related Disorders
Risk Factors

Chemicals

Analgesics, Opioid

Word Cloud

Created with Highcharts 10.0.0OUDcasesuseMLprospectivehealthpredictionbaseddatamodeladministrativedisorderopioidOpioidlearningearlydetectionrepresentativepotentialpredictfuturestudy20142018validationsample2019recordsaccuracyOBJECTIVE:chronicrelapsingproblematicpatternaffectingnearly27millionpeopleworldwideMachine-basedmayleadinterventionHoweverstudiessourcesvalidationslimitingnewcurrentaimeddevelopvalidateindividuallarge-scaleMETHOD:presentensemblemachine-learningtrainedcross-linkedCanadianset  =  699164model-predictedhold-out  =  174791non-overlapping  =  316039useddiagnosissubjectInternationalClassificationDiseasesICDcodesRESULTS:6409mean[SD]4534[1428]3400malesprospectivelypredictedhighbalanced86%sensitivity93%specificity79%accordpriorfindingstopriskfactorsindicatorshistorysubstancedisordersCONCLUSION:presentsindividualizedapplyinglargedatasetspredictionsessentialclinicalapplicationsIndividualizedProspectivePredictionUseDisorderelectronicmachine

Similar Articles

Cited By