Threshold response to melt drives large-scale bed weakening in Greenland.

Nathan Maier, Florent Gimbert, Fabien Gillet-Chaulet
Author Information
  1. Nathan Maier: Université Grenoble Alpes, CNRS, IGE, Grenoble, France. ntmaier@gmail.com. ORCID
  2. Florent Gimbert: Université Grenoble Alpes, CNRS, IGE, Grenoble, France. ORCID
  3. Fabien Gillet-Chaulet: Université Grenoble Alpes, CNRS, IGE, Grenoble, France.

Abstract

Ice speeds in Greenland are largely set by basal motion, which is modulated by meltwater delivery to the ice base. Evidence suggests that increasing melt rates enhance the subglacial drainage network's capacity to evacuate basal water, increasing bed friction and causing the ice to slow. This limits the potential of melt forcing to increase mass loss as temperatures increase. Here we show that melt forcing has a pronounced influence on dynamics, but factors besides melt rates primarily control its impact. Using a method to examine friction variability across the entirety of western Greenland, we show that the main impact of melt forcing is an abrupt north-to-south change in bed strength that cannot be explained by changes in melt production. The southern ablation zone is weakened by 20-40 per cent compared with regions with no melt, whereas in northern Greenland the ablation zone is strengthened. We show that the weakening is consistent with persistent basal water storage and that the threshold is linked to differences in sliding and hydropotential gradients, which exert primary control on the pressures within drainage pathways that dewater the bed. These characteristics are mainly set by whether a margin is land or marine terminating, suggesting that dynamic changes that increase mass loss are likely to occur in northern Greenland as temperatures increase. Our results point to physical representations of these findings that will improve simulated ice-sheet evolution at centennial scales.

References

  1. Maier, N., Humphrey, N., Harper, J. & Meierbachtol, T. Sliding dominates slow-flowing margin regions, Greenland Ice Sheet. Sci. Adv. 5, eaaw5406 (2019). [PMID: 31309154]
  2. Bartholomew, I. et al. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci. 3, 408–411 (2010). [DOI: 10.1038/ngeo863]
  3. Hoffman, M., Catania, G. A., Neumann, T., Andrews, L. & Rumrill, J. Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 116, F04035 (2011).
  4. Andrews, L. C. et al. Seasonal evolution of the subglacial hydrologic system modified by supraglacial lake drainage in western Greenland. J. Geophys. Res. Earth Surf. 123, 1479–1496 (2018). [DOI: 10.1029/2017JF004585]
  5. Williams, J. J., Gourmelen, N. & Nienow, P. Dynamic response of the Greenland Ice Sheet to recent cooling. Sci. Rep. 10, 1647 (2020). [PMID: 32015394]
  6. Tedstone, A. J. et al. Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming. Nature 526, 692–695 (2015). [PMID: 26511580]
  7. Van de Wal, R. et al. Self-regulation of ice flow varies across the ablation area in south-west Greenland. Cryosphere 9, 603–611 (2015). [DOI: 10.5194/tc-9-603-2015]
  8. Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R. & Nienow, P. W. The influence of hydrology on the dynamics of land-terminating sectors of the Greenland Ice Sheet. Front. Earth Sci. 7, 10 (2019). [DOI: 10.3389/feart.2019.00010]
  9. Hoffman, M. J. et al. Greenland subglacial drainage evolution regulated by weakly connected regions of the bed. Nat. Commun. 7, 13903 (2016). [PMID: 27991518]
  10. Stevens, L. A. et al. Greenland Ice Sheet flow response to runoff variability. Geophys. Res. Lett. 43, 11295–11303 (2016). [DOI: 10.1002/2016GL070414]
  11. Pattyn, F. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. Clim. Change 8, 1053–1061 (2018). [DOI: 10.1038/s41558-018-0305-8]
  12. Andrews, L. C. et al. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet. Nature 514, 80–83 (2014). [PMID: 25279921]
  13. Cowton, T., Nienow, P., Sole, A., Bartholomew, I. & Mair, D. Variability in ice motion at a land-terminating Greenlandic outlet glacier: the role of channelized and distributed drainage systems. J. Glaciol. 62, 451–466 (2016). [DOI: 10.1017/jog.2016.36]
  14. Bougamont, M. et al. Sensitive response of the Greenland Ice Sheet to surface melt drainage over a soft bed. Nat. Commun. 5, 5052 (2014). [PMID: 25262753]
  15. Chandler, D. et al. Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers. Nat. Geosci. 6, 195–198 (2013). [DOI: 10.1038/ngeo1737]
  16. Fettweis, X. et al. Estimating the Greenland Ice Sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. TCryosphere 7, 469–489 (2013). [DOI: 10.5194/tc-7-469-2013]
  17. Mejía, J. et al. Isolated cavities dominate Greenland Ice Sheet dynamic response to lake drainage. Geophys. Res. Lett. 48, e2021GL094762 (2021). [DOI: 10.1029/2021GL094762]
  18. Joughin, I., Smith, B. E. & Howat, I. Greenland ice mapping project: ice flow velocity variation at sub-monthly to decadal time scales. Cryosphere 12, 2211 (2018). [PMID: 31007854]
  19. Moon, T. et al. Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett. 41, 7209–7216 (2014). [PMID: 25821275]
  20. Doyle, S. H. et al. Persistent flow acceleration within the interior of the Greenland Ice Sheet. Geophys. Res. Lett. 41, 899–905 (2014). [DOI: 10.1002/2013GL058933]
  21. Gagliardini, O. & Werder, M. A. Influence of increasing surface melt over decadal timescales on land-terminating Greenland-type outlet glaciers. J. Glaciol. 64, 700–710 (2018). [DOI: 10.1017/jog.2018.59]
  22. Goelzer, H. et al. The future sea-level contribution of the Greenland Ice Sheet: a multi-model ensemble study of ISMIP6. Cryosphere 14, 3071–3096 (2020).
  23. Maier, N., Gimbert, F., Gillet-Chaulet, F. & Gilbert, A. Basal traction mainly dictated by hard-bed physics over grounded regions of Greenland. Cryosphere 15, 1435–1451 (2021). [DOI: 10.5194/tc-15-1435-2021]
  24. Joughin, I., Smith, B., Howat, I. & Scambos, T. MEaSUREs Multi-year Greenland Ice Sheet Velocity Mosaic, Version 1. NSIDC https://doi.org/10.5067/QUA5Q9SVMSJG (2016).
  25. Smith, L. C. et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland Ice Sheet. Proc. Natl Acad. Sci. USA 112, 1001–1006 (2015). [PMID: 25583477]
  26. Stevens, L. A. et al. Greenland supraglacial lake drainages triggered by hydrologically induced basal slip. Nature 522, 73–76 (2015). [PMID: 26040890]
  27. Selmes, N., Murray, T. & James, T. Fast draining lakes on the Greenland Ice Sheet. Geophys. Res. Lett. 38, L15501 (2011).
  28. Tedstone, A. J. et al. Greenland Ice Sheet motion insensitive to exceptional meltwater forcing. Proc. Natl Acad. Sci. USA 110, 19719–19724 (2013). [PMID: 24248343]
  29. Fettweis, X. et al. Reconstructions of the 1900–2015 Greenland Ice Sheet surface mass balance using the regional climate MAR model. Cryosphere 11, 1015–1033 (2017). [DOI: 10.5194/tc-11-1015-2017]
  30. Sole, A. et al. Winter motion mediates dynamic response of the Greenland Ice Sheet to warmer summers. Geophys. Res. Lett. 40, 3940–3944 (2013). [DOI: 10.1002/grl.50764]
  31. Meierbachtol, T., Harper, J. & Humphrey, N. Basal drainage system response to increasing surface melt on the Greenland Ice Sheet. Science 341, 777–779 (2013). [PMID: 23950535]
  32. Banwell, A., Hewitt, I., Willis, I. & Arnold, N. Moulin density controls drainage development beneath the Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 121, 2248–2269 (2016). [DOI: 10.1002/2015JF003801]
  33. Röthlisberger, H. Water pressure in intra-and subglacial channels. J. Glaciol. 11, 177–203 (1972). [DOI: 10.1017/S0022143000022188]
  34. Schoof, C. Ice-sheet acceleration driven by melt supply variability. Nature 468, 803–806 (2010). [PMID: 21150994]
  35. Stearns, L. A. & van der Veen, C. J. Friction at the bed does not control fast glacier flow. Science 361, 273–277 (2018). [PMID: 29880724]
  36. Gimbert, F., Gilbert, A., Gagliardini, O., Vincent, C. & Moreau, L. Do existing theories explain seasonal to multi-decadal changes in glacier basal sliding speed? Geophys. Res. Lett. 43, e2021GL092858 (2021).
  37. Catania, G., Stearns, L., Moon, T., Enderlin, E. & Jackson, R. Future evolution of Greenland’s marine‐terminating outlet glaciers. J. Geophys. Res. Earth Surf. 125, e2018JF004873 (2020).
  38. Helanow, C., Iverson, N. R., Woodard, J. B. & Zoet, L. K. A slip law for hard-bedded glaciers derived from observed bed topography. Sci. Adv. 7, eabe7798 (2021). [PMID: 33990323]
  39. Moon, T. A., Gardner, A. S., Csatho, B., Parmuzin, I. & Fahnestock, M. A. Rapid reconfiguration of the Greenland Ice Sheet coastal margin. J. Geophys. Res. Earth Surf. 125, e2020JF005585 (2020). [DOI: 10.1029/2020JF005585]
  40. Werder, M. A., Hewitt, I. J., Schoof, C. G. & Flowers, G. E. Modeling channelized and distributed subglacial drainage in two dimensions. J. Geophys. Res. Earth Surf. 118, 2140–2158 (2013). [DOI: 10.1002/jgrf.20146]
  41. Brondex, J., Gagliardini, O., Gillet-Chaulet, F. & Durand, G. Sensitivity of grounding line dynamics to the choice of the friction law. J. Glaciol. 63, 854–866 (2017). [DOI: 10.1017/jog.2017.51]
  42. Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015). [PMID: 26580020]
  43. Vandecrux, B. et al. Firn data compilation reveals widespread decrease of firn air content in western Greenland. Cryosphere 13, 845–859 (2019). [DOI: 10.5194/tc-13-845-2019]
  44. Zwally, H. J., Giovinetto, M. B., Beckley, M. A. & Saba, J. L. Antarctic and Greenland Drainage Systems (GSFC Cryospheric Sciences Laboratory, 2012); https://earth.gsfc.nasa.gov/cryo/data/polar-altimetry/antarctic-and-greenland-drainage-systems
  45. Howat, I., Negrete, A. & Smith, B. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 8, 1509–1518 (2014). [DOI: 10.5194/tc-8-1509-2014]
  46. Howat, I., Negrete, A. & Smith, B. MEaSUREs Greenland Ice Mapping Project (GIMP) digital elevation model from GeoEye and WorldView Imagery, Version 1. NSIDC https://doi.org/10.5067/H0KUYVF53Q8M (2017).
  47. Gagliardini, O., Cohen, D., Råback, P. & Zwinger, T. Finite-element modeling of subglacial cavities and related friction law. J. Geophys. Res. Earth Surf. 112, F02027 (2007).
  48. Weertman, J. The theory of glacier sliding. J. Glaciol. 5, 287–303 (1964). [DOI: 10.1017/S0022143000029038]
  49. Morlighem, M. et al. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 44, 11051–11061 (2017). [PMID: 29263561]
  50. Morlighem, M. IceBridge BedMachine Greenland, Version 3. NSIDC https://doi.org/10.5067/2CIX82HUV88Y (2018).
  51. Joughin, I., Smith, B. E. & Howat, I. M. A complete map of Greenland ice velocity derived from satellite data collected over 20 years. J. Glaciol. 64, 1–11 (2018). [PMID: 31217636]
  52. Gagliardini, O. et al. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geosci. Model Dev. 6, 1299–1318 (2013). [DOI: 10.5194/gmd-6-1299-2013]
  53. Goelzer, H., Robinson, A., Seroussi, H. & van de Wal, R. S. W. Recent progress in Greenland Ice Sheet modelling. Curr. Clim. Change Rep. 3, 291–302 (2017). [PMID: 32010550]
  54. Morlighem, M. et al. Spatial patterns of basal drag inferred using control methods from a full‐Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 37, L14502 (2010).
  55. Joughin, I., MacAyeal, D. R. & Tulaczyk, S. Basal shear stress of the Ross ice streams from control method inversions. J. Geophys. Res. Solid Earth 109, B09405 (2004).
  56. Quiquet, A. & Dumas, C. The GRISLI-LSCE contribution to the Ice Sheet Model Intercomparison Project for phase 6 of the Coupled Model Intercomparison Project (ISMIP6)—Part 1: projections of the Greenland Ice Sheet evolution by the end of the 21st century. Cryosphere 15, 1015–1030 (2021). [DOI: 10.5194/tc-15-1015-2021]
  57. Mouginot, J., Rignot, E., Scheuchl, B. & Millan, R. Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data. Remote Sens. 9, 364 (2017). [DOI: 10.3390/rs9040364]
  58. MacGregor, J. et al. A synthesis of the basal thermal state of the Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 121, 1328–1350 (2016). [PMID: 28163988]
  59. Noël, B. et al. Evaluation of the updated regional climate model RACMO2. 3: summer snowfall impact on the Greenland Ice Sheet. Cryosphere 9, 1831–1844 (2015). [DOI: 10.5194/tc-9-1831-2015]
  60. Woodard, J., Zoet, L., Iverson, N. R. & Helanow, C. Linking bedrock discontinuities to glacial quarrying. Ann. Glaciol. 60, 66–72 (2019). [DOI: 10.1017/aog.2019.36]
  61. Crompton, J. W. & Flowers, G. E. Correlations of suspended sediment size with bedrock lithology and glacier dynamics. Ann. Glaciol. 57, 142–150 (2016). [DOI: 10.1017/aog.2016.6]
  62. Dawes, P. R. The bedrock geology under the Inland Ice: the next major challenge for Greenland mapping. Geol. Surv. Den. Greenl. Bull. 17, 57–60 (2009).
  63. Cooper, M. A. et al. Subglacial roughness of the Greenland Ice Sheet: relationship with contemporary ice velocity and geology. Cryosphere 13, 3093–3115 (2019). [DOI: 10.5194/tc-13-3093-2019]
  64. Chu, W. et al. Extensive winter subglacial water storage beneath the Greenland Ice Sheet. Geophys. Res. Lett. 43, 12484–12492 (2016). [DOI: 10.1002/2016GL071538]
  65. Cohen, D., Hooyer, T. S., Iverson, N. R., Thomason, J. & Jackson, M. Role of transient water pressure in quarrying: a subglacial experiment using acoustic emissions. J. Geophys. Res. Earth Surf. 111, F03006 (2006).
  66. Hallet, B. Glacial quarrying: a simple theoretical model. Ann. Glaciol. 22, 1–8 (1996). [DOI: 10.3189/1996AoG22-1-1-8]
  67. Poinar, K., Joughin, I., LENAERTS, J. T. & Van Den Broeke, M. R. Englacial latent-heat transfer has limited influence on seaward ice flux in western Greenland. J. Glaciol. 63, 1–16 (2017). [DOI: 10.1017/jog.2016.103]
  68. Harrington, J. A., Humphrey, N. F. & Harper, J. T. Temperature distribution and thermal anomalies along a flowline of the Greenland Ice Sheet. Ann. Glaciol. 56, 98–104 (2015). [DOI: 10.3189/2015AoG70A945]
  69. Karlsson, N. B. et al. A first constraint on basal melt-water production of the Greenland Ice Sheet. Nat. Commun. 12, 3461 (2021). [PMID: 34103508]
  70. Iken, A. The effect of the subglacial water pressure on the sliding velocity of a glacier in an idealized numerical model. J. Glaciol. 27, 407–421 (1981). [DOI: 10.1017/S0022143000011448]
  71. Zoet, L. K. & Iverson, N. R. A slip law for glaciers on deformable beds. Science 368, 76–78 (2020). [PMID: 32241945]
  72. Nye, J. F. A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation. Proc. R. Soc. Lond. A 311, 445–467 (1969). [DOI: 10.1098/rspa.1969.0127]
  73. Schwanghart, W. & Scherler, D. TopoToolbox 2—MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2, 1–7 (2014). [DOI: 10.5194/esurf-2-1-2014]
  74. Covington, M., Gulley, J., Trunz, C., Mejia, J. & Gadd, W. Moulin volumes regulate subglacial water pressure on the Greenland Ice Sheet. Geophys. Res. Lett. 47, e2020GL088901 (2020). [DOI: 10.1029/2020GL088901]

Word Cloud

Created with Highcharts 10.0.0meltGreenlandbedincreasebasalforcingshowseticeincreasingratesdrainagewaterfrictionmasslosstemperaturescontrolimpactchangesablationzonenorthernweakeningIcespeedslargelymotionmodulatedmeltwaterdeliverybaseEvidencesuggestsenhancesubglacialnetwork'scapacityevacuatecausingslowlimitspotentialpronouncedinfluencedynamicsfactorsbesidesprimarilyUsingmethodexaminevariabilityacrossentiretywesternmainabruptnorth-to-southchangestrengthexplainedproductionsouthernweakened20-40 percentcomparedregionswhereasstrengthenedconsistentpersistentstoragethresholdlinkeddifferencesslidinghydropotentialgradientsexertprimarypressureswithinpathwaysdewatercharacteristicsmainlywhethermarginlandmarineterminatingsuggestingdynamiclikelyoccurresultspointphysicalrepresentationsfindingswillimprovesimulatedice-sheetevolutioncentennialscalesThresholdresponsedriveslarge-scale

Similar Articles

Cited By