Marginal structural models for multilevel clustered data.

Yujie Wu, Benjamin Langworthy, Molin Wang
Author Information
  1. Yujie Wu: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.
  2. Benjamin Langworthy: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.
  3. Molin Wang: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA, and Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA and Harvard Medical School, Boston, MA 02115, USA.

Abstract

Marginal structural models (MSMs), which adopt inverse probability treatment weighting in the estimating equations, are powerful tools to estimate the causal effects of time-varying exposures in the presence of time-dependent confounders. Motivated by the Conservation of Hearing Study (CHEARS) Audiology Assessment Arm (AAA) where repeated hearing measurements were clustered by study participants, time, and testing sites, we propose two methods to account for the multilevel correlation structure when fitting the MSMs. The first method directly models the covariance of the repeated outcomes when solving the weighted generalized estimating equations for MSMs, while the second two-stage analysis approach fits cluster-specific MSMs first and then combines the estimated parameters using mixed-effects meta-analysis. Finite sample simulation results suggest that our methods can obtain less biased and more efficient estimates of the parameters by accounting for the multilevel correlation. Moreover, we explore the effects of using fixed- or mixed-effects model to estimate the treatment probability on the parameter estimates of the MSMs in the presence of unmeasured cluster-level confounders. Lastly, we apply our methods to the CHEARS AAA data set, to estimate the causal effects of aspirin use on hearing loss.

Keywords

References

  1. Biometrics. 1986 Mar;42(1):121-30 [PMID: 3719049]
  2. Am J Epidemiol. 2020 Mar 2;189(3):204-214 [PMID: 31608356]
  3. Stat Med. 2014 Dec 30;33(30):5371-87 [PMID: 25087978]
  4. Stat Methods Med Res. 2012 Feb;21(1):31-54 [PMID: 21030422]
  5. Biometrics. 2021 Sep;77(3):1101-1117 [PMID: 32662087]
  6. Soc Psychiatry Psychiatr Epidemiol. 2016 Nov;51(11):1457-1466 [PMID: 27631394]
  7. Res Synth Methods. 2010 Apr;1(2):97-111 [PMID: 26061376]
  8. Stat Med. 2019 Dec 20;38(29):5429-5444 [PMID: 31647135]
  9. Biometrics. 1991 Sep;47(3):825-39 [PMID: 1742441]
  10. J Nutr. 2018 Jun 1;148(6):944-951 [PMID: 29757402]
  11. Epidemiology. 2000 Sep;11(5):550-60 [PMID: 10955408]
  12. Stat Methods Med Res. 2012 Feb;21(1):55-75 [PMID: 21068053]
  13. Am J Epidemiol. 2010 Mar 15;171(6):674-7; discussion 678-81 [PMID: 20139125]
  14. Stat Med. 2002 Jun 30;21(12):1689-709 [PMID: 12111906]
  15. Stat Med. 2013 Aug 30;32(19):3373-87 [PMID: 23526267]
  16. Biom J. 2021 Oct;63(7):1526-1541 [PMID: 33983641]
  17. Biostatistics. 2023 Dec 15;25(1):57-79 [PMID: 36815555]
  18. Epidemiology. 2012 Jul;23(4):644-6 [PMID: 22659551]

Grants

  1. R01 DC017717/NIDCD NIH HHS
  2. U01 CA176726/NCI NIH HHS
  3. U01 HL145386/NHLBI NIH HHS

MeSH Term

Aspirin
Causality
Humans
Models, Statistical
Models, Structural
Probability

Chemicals

Aspirin

Word Cloud

Created with Highcharts 10.0.0MSMsmodelsdataMarginalstructuralestimateeffectsmethodsmultilevelcorrelationprobabilitytreatmentestimatingequationscausalpresenceconfoundersCHEARSAAArepeatedhearingclusteredfirstparametersusingmixed-effectsestimatesadoptinverseweightingpowerfultoolstime-varyingexposurestime-dependentMotivatedConservationHearingStudyAudiologyAssessmentArmmeasurementsstudyparticipantstimetestingsitesproposetwoaccountstructurefittingmethoddirectlycovarianceoutcomessolvingweightedgeneralizedsecondtwo-stageanalysisapproachfitscluster-specificcombinesestimatedmeta-analysisFinitesamplesimulationresultssuggestcanobtainlessbiasedefficientaccountingMoreoverexplorefixed-modelparameterunmeasuredcluster-levelLastlyapplysetaspirinuselossAudiometricClusteredMeta-analysisMultilevelWeightedGEE

Similar Articles

Cited By