: A code for fitting multi-wave epidemic models.

Americo Cunha, Fernando da Conceição Batista, Paulo Roberto de Lima Gianfelice, Ricardo Sovek Oyarzabal, Jose Mario Vicensi Grzybowski, Elbert E N Macau
Author Information
  1. Americo Cunha: Rio de Janeiro State University, Rio de Janeiro, Brazil.
  2. Fernando da Conceição Batista: Polytechnic Institute of Leiria, Leiria, Portugal.
  3. Paulo Roberto de Lima Gianfelice: Federal University of São Paulo, São José dos Campos, Brazil.
  4. Ricardo Sovek Oyarzabal: Federal University of São Paulo, São José dos Campos, Brazil.
  5. Jose Mario Vicensi Grzybowski: Federal University of Fronteira Sul, Erechim, Brazil.
  6. Elbert E N Macau: Federal University of São Paulo, São José dos Campos, Brazil.

Abstract

The COVID-19 pandemic has given rise to a great demand for computational models capable of describing and inferring the evolution of an epidemic outbreak in the short term. In this sense, we introduce , a package that provides a framework for fitting multi-wave epidemic models to data from actual outbreaks of COVID-19 and other infectious diseases.

Keywords

References

  1. PLoS Negl Trop Dis. 2016 May 17;10(5):e0004726 [PMID: 27186984]
  2. Malar J. 2011 Jul 21;10:202 [PMID: 21777413]
  3. Malar J. 2020 Nov 11;19(1):404 [PMID: 33176792]
  4. Phys Rev Lett. 2001 Apr 2;86(14):3200-3 [PMID: 11290142]
  5. Chaos. 2020 May;30(5):051103 [PMID: 32491876]
  6. Chaos. 2022 Mar;32(3):031101 [PMID: 35364850]
  7. Am J Trop Med Hyg. 2008 Dec;79(6):933-9 [PMID: 19052308]
  8. Epidemics. 2018 Dec;25:101-111 [PMID: 29945778]
  9. Softw Impacts. 2022 May;12:100252 [PMID: 35187502]

Word Cloud

Created with Highcharts 10.0.0modelsepidemicfittingCOVID-19multi-waveModelpandemicgivenrisegreatdemandcomputationalcapabledescribinginferringevolutionoutbreakshorttermsenseintroducepackageprovidesframeworkdataactualoutbreaksinfectiousdiseases:codeEpidemicMathematicalepidemiologycalibration

Similar Articles

Cited By