An Assay Combining Droplet Digital PCR With Propidium Monoazide Treatment for the Accurate Detection of Live Cells of in Plasma Samples.

Ling Hu, Yidong Fu, Shun Zhang, Zhilei Pan, Jiang Xia, Peng Zhu, Jing Guo
Author Information
  1. Ling Hu: Hangzhou Medical College, Hangzhou, China.
  2. Yidong Fu: Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.
  3. Shun Zhang: Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.
  4. Zhilei Pan: Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.
  5. Jiang Xia: Pilot Gene Technologies (Hangzhou) Co., Ltd., Hangzhou, China.
  6. Peng Zhu: Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.
  7. Jing Guo: Hangzhou Medical College, Hangzhou, China.

Abstract

() is one of the most common pathogenic species to humans; therefore, the establishment of timely and credible detection methods has become an urgent requirement for illness surveillance. In this study, an assay combining droplet digital PCR (ddPCR) with propidium monoazide (PMA) treatment was developed for detecting The primers/probes targeting the hemolysin A () gene, amplification procedures, and PMA processing conditions involved in the assay were optimized. Then, we analyzed the specificity, sensitivity, and ability to detect live cell DNA while testing the performance of PMA-ddPCR in clinical samples. The optimal concentrations of primers and probes were 1.0 and 0.3 μM, respectively. The annealing temperature achieving the highest accuracy in ddPCR assay was 60°C. With an initial cell concentration of 10 CFU/mL (colony-forming units per milliliter), the optimal strategy to distinguish live cells from dead cells was to treat samples with 100 μM PMA for 15 min in the dark and expose them to LED light with an output wavelength of 465 nm for 10 min. The specificity of the PMA-ddPCR assay was tested on 27 strains, including seven strains and 20 other bacterial strains. Only the seven strains were observed with positive signals in specificity analysis. Comparative experiments on the detection ability of PMA-ddPCR and PMA-qPCR in pure cultures and plasma samples were performed. The limit of detection (LOD) and the limit of quantitation (LOQ) in pure culture solutions of were 29.33 and 53.64 CFU/mL in PMA-ddPCR, respectively. For artificially clinical sample tests in PMA-ddPCR, could be detected at concentrations as low as 65.20 CFU/mL. The sensitivity of the PMA-ddPCR assay was 15- to 40-fold more sensitive than the PMA-qPCR in this study. The PMA-ddPCR assay we developed provides a new insight to accurately detect live cells of in clinical samples, which is of great significance to enhance public health safety and security capability and improve the emergency response level for infection.

Keywords

References

  1. Mol Cell Probes. 2021 Jun;57:101726 [PMID: 33789126]
  2. Crit Rev Food Sci Nutr. 2022;62(5):1317-1335 [PMID: 33146031]
  3. Osong Public Health Res Perspect. 2019 Dec;10(6):337-342 [PMID: 31897362]
  4. J Microbiol Methods. 2015 Aug;115:147-52 [PMID: 26001818]
  5. J Microbiol. 2020 Aug;58(8):668-674 [PMID: 32583285]
  6. Anal Bioanal Chem. 2011 Aug;401(2):717-26 [PMID: 21603916]
  7. Appl Environ Microbiol. 2005 Oct;71(10):5702-9 [PMID: 16204478]
  8. J Orthop Res. 2010 Sep;28(9):1245-51 [PMID: 20186836]
  9. Front Microbiol. 2020 Nov 06;11:586981 [PMID: 33240242]
  10. Front Cell Infect Microbiol. 2021 Feb 25;11:639473 [PMID: 33718286]
  11. Arch Microbiol. 2021 Dec 6;204(1):5 [PMID: 34870749]
  12. Antibiotics (Basel). 2021 Apr 29;10(5): [PMID: 33946739]
  13. Mar Pollut Bull. 2019 Dec;149:110546 [PMID: 31543486]
  14. Biochip J. 2021;15(4):371-380 [PMID: 34745431]
  15. Int J Food Microbiol. 2019 Jan 2;288:58-65 [PMID: 29571579]
  16. Microbiome. 2021 Jan 21;9(1):17 [PMID: 33478576]
  17. Surg Infect (Larchmt). 2022 Apr;23(3):288-297 [PMID: 35180367]
  18. J Microbiol Methods. 2008 Dec;75(3):398-404 [PMID: 18706941]
  19. Int J Infect Dis. 2018 Mar;68:74-76 [PMID: 29410041]
  20. J Microbiol Methods. 2006 Nov;67(2):310-20 [PMID: 16753236]
  21. Mol Cell Probes. 2021 Feb;55:101689 [PMID: 33338586]
  22. Emerg Microbes Infect. 2021 Dec;10(1):1890-1895 [PMID: 34487488]
  23. Korean J Intern Med. 2018 Nov;33(6):1070-1078 [PMID: 29898575]
  24. Environ Microbiome. 2021 Jun 22;16(1):13 [PMID: 34158117]
  25. Sci Total Environ. 2022 Jul 10;829:154075 [PMID: 35218838]
  26. J Food Prot. 2005 Dec;68(12):2533-40 [PMID: 16355823]
  27. Front Microbiol. 2021 Nov 24;12:748337 [PMID: 34899636]
  28. Front Cell Infect Microbiol. 2017 Jun 06;7:237 [PMID: 28634574]
  29. Sci Total Environ. 2021 Nov 25;797:149085 [PMID: 34293609]
  30. J Microbiol Methods. 2004 Dec;59(3):301-16 [PMID: 15488274]
  31. Emerg Microbes Infect. 2020 Dec;9(1):1259-1268 [PMID: 32438868]
  32. Curr Microbiol. 2020 Apr;77(4):682-687 [PMID: 31811375]
  33. J Appl Microbiol. 2014 Jan;116(1):1-13 [PMID: 24119073]
  34. Int J Infect Dis. 2019 Apr;81:73-80 [PMID: 30690211]
  35. Front Immunol. 2020 Oct 23;11:599439 [PMID: 33193453]
  36. Front Microbiol. 2021 Jun 02;12:617703 [PMID: 34149632]
  37. Am J Trop Med Hyg. 2017 Aug;97(2):443-446 [PMID: 28829729]
  38. Front Microbiol. 2021 Mar 01;12:604933 [PMID: 33732219]
  39. J Vet Res. 2020 May 12;64(2):253-261 [PMID: 32587912]
  40. Euro Surveill. 2021 Oct;26(41): [PMID: 34651572]
  41. J Neurovirol. 2019 Feb;25(1):127-132 [PMID: 30397825]
  42. Antonie Van Leeuwenhoek. 2021 Sep;114(9):1417-1429 [PMID: 34255280]
  43. Int J Environ Res Public Health. 2021 Apr 22;18(9): [PMID: 33922061]
  44. Lett Appl Microbiol. 2021 Mar;72(3):245-250 [PMID: 33058219]
  45. Int J Infect Dis. 2017 Jun;59:1-6 [PMID: 28347850]
  46. Trends Microbiol. 2020 Jan;28(1):81-82 [PMID: 31519331]
  47. Int J Biol Macromol. 2021 Aug 1;184:750-759 [PMID: 34171259]
  48. Front Microbiol. 2017 Apr 04;8:580 [PMID: 28421064]
  49. Indian J Med Microbiol. 2021 Jul;39(3):386-388 [PMID: 34127319]
  50. Eur J Clin Microbiol Infect Dis. 2019 Nov;38(11):2103-2112 [PMID: 31352670]
  51. J Food Prot. 2010 Jul;73(7):1288-93 [PMID: 20615341]
  52. Microb Biotechnol. 2020 May;13(3):657-668 [PMID: 31605465]
  53. Diagn Microbiol Infect Dis. 2014 Jun;79(2):115-8 [PMID: 24731836]
  54. Braz J Microbiol. 2020 Jun;51(2):773-778 [PMID: 31654340]

Word Cloud

Created with Highcharts 10.0.0PMA-ddPCRassaydetectionclinicalsamplesstrainsPCRPMAspecificityliveCFU/mLcellsstudydropletdigitalddPCRpropidiummonoazidedevelopedgenesensitivityabilitydetectcelloptimalconcentrations0μMrespectively10minseven20PMA-qPCRpurelimitonecommonpathogenicspecieshumansthereforeestablishmenttimelycrediblemethodsbecomeurgentrequirementillnesssurveillancecombiningtreatmentdetectingprimers/probestargetinghemolysinamplificationproceduresprocessingconditionsinvolvedoptimizedanalyzedDNAtestingperformanceprimersprobes13annealingtemperatureachievinghighestaccuracy60°Cinitialconcentrationcolony-formingunitspermilliliterstrategydistinguishdeadtreat10015darkexposeLEDlightoutputwavelength465nmtested27includingbacterialobservedpositivesignalsanalysisComparativeexperimentsculturesplasmaperformedLODquantitationLOQculturesolutions29335364artificiallysampletestsdetectedlow6515-40-foldsensitiveprovidesnewinsightaccuratelygreatsignificanceenhancepublichealthsafetysecuritycapabilityimproveemergencyresponselevelinfectionAssayCombiningDropletDigitalPropidiumMonoazideTreatmentAccurateDetectionLiveCellsPlasmaSamplesVibriovulnificusaccuratevvhA

Similar Articles

Cited By