Immunization of Broiler Chickens With a Killed Chitosan Nanoparticle Vaccine Decreases Enterica Serovar Enteritidis Load.

Keila Acevedo-Villanueva, Gabriel Akerele, Walid Al-Hakeem, Daniel Adams, Renukaradhy Gourapura, Ramesh Selvaraj
Author Information
  1. Keila Acevedo-Villanueva: Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.
  2. Gabriel Akerele: Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.
  3. Walid Al-Hakeem: Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.
  4. Daniel Adams: Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.
  5. Renukaradhy Gourapura: Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States.
  6. Ramesh Selvaraj: Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.

Abstract

There is a critical need for an oral-killed vaccine for broilers. Chitosan nanoparticle (CNP) vaccines can be used to deliver antigens orally. We investigated the efficacy of a killed CNP vaccine on broilers. CNP vaccine was synthesized using enterica serovar Enteritidis (. Enteritidis) outer membrane and flagella proteins. CNP was stable at acidic conditions by releasing 14% of proteins at pH 5.5. At 17 h post-incubation, the cumulative protein release for CNP was 75% at pH 7.4. Two hundred microliters of PBS with chicken red blood cells incubated with 20 μg/ml CNP released 0% hemoglobin. Three hundred chicks were allocated into 1) Control, 2) Challenge, 3) Vaccine + Challenge. At d1 of age, chicks were spray-vaccinated with PBS or 40 mg CNP. At d7 of age, chicks were orally-vaccinated with PBS or 20 μg CNP/bird. At d14 of age, birds were orally-challenged with PBS or 1 × 10 CFU/bird of . Enteritidis. The CNP-vaccinated birds had higher antigen-specific IgY/IgA and lymphocyte-proliferation against flagellin ( < 0.05). At 14 days post-infection, CNP-vaccinated birds reversed the loss in gut permeability by 13% ( < 0.05). At 21 days post-infection, the CNP-vaccinated birds decreased . Enteritidis in the ceca and spleen by 2 Log CFU/g, and in the small intestine by 0.6 Log CFU/g ( < 0.05). We conclude that the CNP vaccine is a viable alternative to conventional poultry vaccines.

Keywords

References

  1. Infect Immun. 2008 Sep;76(9):4137-44 [PMID: 18625740]
  2. Cell Host Microbe. 2008 Oct 16;4(4):337-49 [PMID: 18854238]
  3. Nat Med. 2005 Apr;11(4 Suppl):S45-53 [PMID: 15812489]
  4. PLoS One. 2012;7(2):e32346 [PMID: 22384225]
  5. Immunol Lett. 2005 Nov 15;101(2):117-22 [PMID: 15975666]
  6. Annu Rev Microbiol. 1997;51:311-40 [PMID: 9343353]
  7. Vet Immunol Immunopathol. 2006 Dec 15;114(3-4):209-23 [PMID: 16996141]
  8. Cell Host Microbe. 2009 May 8;5(5):476-86 [PMID: 19454351]
  9. J Virol. 2003 Jan;77(1):762-8 [PMID: 12477883]
  10. Infect Immun. 2014 Sep;82(9):3845-54 [PMID: 24980970]
  11. Infect Immun. 2007 Dec;75(12):5993-6007 [PMID: 17709416]
  12. Front Immunol. 2018 May 02;9:934 [PMID: 29770135]
  13. J Anim Sci Biotechnol. 2021 Feb 5;12(1):23 [PMID: 33541441]
  14. Scand J Immunol. 2009 Dec;70(6):505-15 [PMID: 19906191]
  15. Cytokine. 2011 Mar;53(3):363-9 [PMID: 21208811]
  16. Vaccines (Basel). 2020 Jun 11;8(2): [PMID: 32545295]
  17. ScientificWorldJournal. 2015;2015:520179 [PMID: 25664339]
  18. Front Nutr. 2018 Jul 12;5:60 [PMID: 30050906]
  19. Poult Sci. 2018 Oct 1;97(10):3510-3518 [PMID: 29982803]
  20. Vaccine. 2012 Jan 11;30(3):656-67 [PMID: 22100638]
  21. PLoS One. 2021 Nov 16;16(11):e0259334 [PMID: 34784366]
  22. Infect Immun. 2004 Apr;72(4):2152-9 [PMID: 15039338]
  23. J Immunol. 2004 Aug 15;173(4):2675-82 [PMID: 15294985]
  24. Poult Sci. 2021 Jul;100(7):101202 [PMID: 34111612]
  25. J Immunol. 2010 Nov 15;185(10):5677-82 [PMID: 21048152]
  26. Dev Comp Immunol. 2002 May;26(4):355-64 [PMID: 11888650]
  27. Poult Sci. 2012 May;91(5):1081-8 [PMID: 22499864]
  28. Int J Nanomedicine. 2018 Nov 30;13:8195-8215 [PMID: 30555234]
  29. PLoS Pathog. 2012 Jan;8(1):e1002499 [PMID: 22275869]
  30. Appl Microbiol Biotechnol. 2015 Nov;99(21):9011-24 [PMID: 26142390]
  31. PLoS One. 2020 Apr 24;15(4):e0231998 [PMID: 32330169]
  32. Vet Immunol Immunopathol. 2020 Jun;224:110059 [PMID: 32408182]
  33. PLoS One. 2012;7(12):e53314 [PMID: 23285276]
  34. Sci Rep. 2018 Feb 2;8(1):2229 [PMID: 29396554]
  35. Poult Sci. 2017 Feb 1;96(2):405-413 [PMID: 27418662]
  36. Int J Nanomedicine. 2020 Feb 03;15:761-777 [PMID: 32099364]
  37. Nat Rev Immunol. 2006 Feb;6(2):148-58 [PMID: 16491139]
  38. J Gen Microbiol. 1958 Dec;19(3):540-1 [PMID: 13611196]
  39. Cytokine. 2021 Oct;146:155654 [PMID: 34325116]
  40. Poult Sci. 1989 Jan;68(1):136-44 [PMID: 2704669]
  41. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  42. Carbohydr Polym. 2020 Sep 1;243:116434 [PMID: 32532387]
  43. PLoS One. 2016 Mar 22;11(3):e0152074 [PMID: 27003833]
  44. Infect Immun. 2006 Feb;74(2):1442-4 [PMID: 16428801]
  45. Parasit Vectors. 2012 Apr 05;5:70 [PMID: 22480148]
  46. Poult Sci. 2019 Dec 1;98(12):6964-6972 [PMID: 31579916]
  47. PLoS One. 2021 Nov 29;16(11):e0260280 [PMID: 34843525]
  48. Vet Immunol Immunopathol. 2020 Oct;228:110111 [PMID: 32846353]
  49. Microb Pathog. 2018 Sep;122:174-179 [PMID: 29906541]
  50. Vaccines (Basel). 2021 Sep 18;9(9): [PMID: 34579278]
  51. J Biomed Mater Res A. 2012 Apr;100(4):939-47 [PMID: 22275184]
  52. Polymers (Basel). 2021 Nov 22;13(22): [PMID: 34833334]
  53. J Virol. 2014 Aug;88(15):8479-89 [PMID: 24829345]
  54. Biomed Res Int. 2020 Jan 3;2020:2032057 [PMID: 31998782]
  55. Infect Immun. 2003 Feb;71(2):872-81 [PMID: 12540569]
  56. Cell Mol Immunol. 2010 May;7(3):164-74 [PMID: 20383173]
  57. J Nutr. 2005 Apr;135(4):837-42 [PMID: 15795444]
  58. Poult Sci. 2014 Aug;93(8):1951-6 [PMID: 24931970]
  59. J Intensive Care. 2019 Mar 20;7:17 [PMID: 30923621]
  60. Poult Sci. 2015 Aug;94(8):1828-35 [PMID: 26049799]
  61. PLoS One. 2021 Apr 6;16(4):e0247938 [PMID: 33822791]
  62. Front Immunol. 2020 May 19;11:935 [PMID: 32508828]
  63. J Pediatr Gastroenterol Nutr. 2000 Oct;31(4):336-55 [PMID: 11045827]
  64. J Nutr. 2006 Jun;136(6):1610-6 [PMID: 16702329]
  65. Vaccine. 2019 Jan 21;37(4):539-549 [PMID: 30591255]
  66. Mucosal Immunol. 2011 Jul;4(4):371-82 [PMID: 21307847]
  67. Front Immunol. 2020 Jan 09;10:2966 [PMID: 31998292]
  68. Infect Immun. 2011 Jul;79(7):2755-63 [PMID: 21555397]
  69. PLoS One. 2007 Sep 19;2(9):e898 [PMID: 17878933]
  70. Vet Immunol Immunopathol. 2003 Nov 15;96(1-2):43-52 [PMID: 14522133]
  71. N Engl J Med. 2004 Nov 25;351(22):2286-94 [PMID: 15525713]

Word Cloud

Created with Highcharts 10.0.0CNPEnteritidisvaccinePBSbirds0broilersvaccineschicksageCNP-vaccinated<05ChitosanproteinspH5hundred12ChallengeVaccinepost-infectionLogCFU/gcriticalneedoral-killednanoparticlecanuseddeliverantigensorallyinvestigatedefficacykilledsynthesizedusingentericaserovaroutermembraneflagellastableacidicconditionsreleasing14%17 hpost-incubationcumulativeproteinrelease75%74Twomicroliterschickenredbloodcellsincubated20 μg/mlreleased0%hemoglobinThreeallocatedControl3+d1spray-vaccinated40 mgd7orally-vaccinated20 μgCNP/birdd14orally-challenged×10 CFU/birdhigherantigen-specificIgY/IgAlymphocyte-proliferationflagellin14 daysreversedlossgutpermeability13%21 daysdecreasedcecaspleensmallintestine6concludeviablealternativeconventionalpoultryImmunizationBroilerChickensKilledNanoparticleDecreasesEntericaSerovarLoadSalmonellananoparticles

Similar Articles

Cited By (7)