Disruption of Functional Brain Networks Underlies the Handwriting Deficit in Children With Developmental Dyslexia.

Zhengyan Liu, Junjun Li, Hong-Yan Bi, Min Xu, Yang Yang
Author Information
  1. Zhengyan Liu: CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
  2. Junjun Li: CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
  3. Hong-Yan Bi: CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
  4. Min Xu: Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China.
  5. Yang Yang: CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.

Abstract

Developmental dyslexia (DD) is a neurological-based learning disorder that affects 5-17.5% of children. Handwriting difficulty is a prevailing symptom of dyslexia, but its neural mechanisms remain elusive. Using functional magnetic resonance imaging (fMRI), this study examined functional brain networks associated with handwriting in a copying task in Chinese children with DD ( = 17) and age-matched children ( = 36). We found that dyslexics showed reduced network connectivity between the sensory-motor network (SMN) and the visual network (VN), and between the default mode network (DMN) and the ventral attention network (VAN) during handwriting, but not during drawing geometric figures. Moreover, the connectivity strength of the networks showing group differences was correlated with handwriting speed, reading and working memory, suggesting that the handwriting deficit in DD is linked with disruption of a large-scale brain network supporting motoric, linguistic and executive control processes. Taken together, this study demonstrates the alternations of functional brain networks that underly the handwriting deficit in Chinese dyslexia, providing a new clue for the neural basis of DD.

Keywords

References

  1. Neuroimage. 2016 Mar;128:316-327 [PMID: 26774610]
  2. Dev Sci. 2022 Mar;25(2):e13161 [PMID: 34288292]
  3. Cortex. 1993 Mar;29(1):115-34 [PMID: 8472549]
  4. Neuroimage. 2021 Jun;233:117911 [PMID: 33711483]
  5. Hum Brain Mapp. 2011 Feb;32(2):240-8 [PMID: 20336688]
  6. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8781-5 [PMID: 15939871]
  7. Neuroimage. 2012 Oct 15;63(1):381-91 [PMID: 22759996]
  8. J Neurosci. 2013 Jun 26;33(26):10676-87 [PMID: 23804091]
  9. Dev Sci. 2021 Mar;24(2):e13046 [PMID: 33035404]
  10. PLoS One. 2007 Oct 17;2(10):e1049 [PMID: 17940613]
  11. Res Dev Disabil. 2020 Feb;97:103553 [PMID: 31841819]
  12. Hum Brain Mapp. 2018 Feb;39(2):662-679 [PMID: 29124823]
  13. Brain Struct Funct. 2021 Jun;226(5):1627-1639 [PMID: 33866405]
  14. Cortex. 2022 Mar;148:68-88 [PMID: 35144049]
  15. Exp Brain Res. 1999 Sep;128(1-2):224-8 [PMID: 10473764]
  16. Lancet. 1999 May 15;353(9165):1662-7 [PMID: 10335786]
  17. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4234-9 [PMID: 17360506]
  18. Neuropsychologia. 2013 Jan;51(1):156-67 [PMID: 23174403]
  19. Ann Dyslexia. 2015 Jul;65(2):53-68 [PMID: 25876887]
  20. Res Dev Disabil. 2011 Sep-Oct;32(5):1745-56 [PMID: 21507609]
  21. Neuroimage. 2007 Aug 1;37(1):90-101 [PMID: 17560126]
  22. J Exp Psychol Learn Mem Cogn. 2014 Sep;40(5):1441-7 [PMID: 24548322]
  23. Neuropsychologia. 2020 Oct;147:107574 [PMID: 32780996]
  24. Neuroimage. 2010 Dec;53(4):1197-207 [PMID: 20600983]
  25. J Learn Disabil. 2020 Mar/Apr;53(2):96-108 [PMID: 31823679]
  26. Front Behav Neurosci. 2018 Nov 30;12:288 [PMID: 30555308]
  27. Magn Reson Med. 2010 May;63(5):1144-53 [PMID: 20432285]
  28. Neuroimage. 2016 Nov 1;141:366-377 [PMID: 27485753]
  29. Br J Educ Psychol. 1992 Nov;62 ( Pt 3):375-90 [PMID: 1467257]
  30. Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12821-12826 [PMID: 29078345]
  31. Neuroimage. 2011 Feb 1;54(3):2426-36 [PMID: 20934519]
  32. Nat Rev Neurosci. 2009 Mar;10(3):186-98 [PMID: 19190637]
  33. Front Hum Neurosci. 2018 Dec 06;12:490 [PMID: 30574080]
  34. PLoS One. 2013 Jul 04;8(7):e68910 [PMID: 23861951]
  35. Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1119-23 [PMID: 23277555]
  36. Res Dev Disabil. 2018 Mar;74:146-159 [PMID: 29413429]
  37. J Child Psychol Psychiatry. 2006 Oct;47(10):1041-50 [PMID: 17073983]
  38. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 [PMID: 11209064]
  39. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 [PMID: 15976020]
  40. J Neurophysiol. 2002 Sep;88(3):1097-118 [PMID: 12205132]
  41. Proc Natl Acad Sci U S A. 2016 May 3;113(18):4909-17 [PMID: 27071124]
  42. Hum Mov Sci. 2015 Aug;42:161-82 [PMID: 26037277]
  43. N Engl J Med. 1998 Jan 29;338(5):307-12 [PMID: 9445412]
  44. J Learn Disabil. 2020 Mar/Apr;53(2):109-119 [PMID: 31526093]
  45. Neuron. 2013 Jul 10;79(1):180-90 [PMID: 23746630]
  46. Brain Connect. 2012;2(3):125-41 [PMID: 22642651]
  47. Science. 2013 Dec 6;342(6163):1251-4 [PMID: 24311693]
  48. PLoS One. 2015 Jul 21;10(7):e0133762 [PMID: 26197049]
  49. Hum Brain Mapp. 2013 Jul;34(7):1670-84 [PMID: 22378588]
  50. Elife. 2020 Oct 29;9: [PMID: 33118931]
  51. Neuropsychologia. 2021 Jul 16;157:107886 [PMID: 33971213]
  52. Neuron. 2011 Nov 17;72(4):665-78 [PMID: 22099467]
  53. Brain Cogn. 2015 Aug;98:15-26 [PMID: 26051526]
  54. Hum Brain Mapp. 2022 Apr 1;43(5):1720-1737 [PMID: 34981603]
  55. J Neurosci. 2014 Oct 15;34(42):14108-14 [PMID: 25319706]
  56. Int J Neurosci. 2013 May;123(5):300-10 [PMID: 23227882]
  57. Front Hum Neurosci. 2015 Aug 19;9:458 [PMID: 26347640]
  58. Neuroimage. 2012 Apr 2;60(2):1055-62 [PMID: 22273567]
  59. Biol Psychiatry. 2014 Sep 1;76(5):397-404 [PMID: 24124929]
  60. Neuroimage. 2006 Dec;33(4):1218-26 [PMID: 17035046]
  61. Neuroimage. 2017 Feb 1;146:301-311 [PMID: 27890803]
  62. Nat Neurosci. 2013 Sep;16(9):1348-55 [PMID: 23892552]
  63. Cognition. 2015 Mar;136:325-36 [PMID: 25525970]
  64. Cereb Cortex. 2015 Oct;25(10):3502-14 [PMID: 25169986]
  65. J Neurosci. 2021 Apr 21;41(16):3679-3691 [PMID: 33664130]
  66. Cortex. 2022 Jan;146:89-105 [PMID: 34844195]
  67. Sci Rep. 2019 Aug 7;9(1):11484 [PMID: 31391479]
  68. Front Hum Neurosci. 2014 Mar 19;8:155 [PMID: 24678293]
  69. Brain Lang. 2021 Aug;219:104962 [PMID: 33984629]
  70. Elife. 2015 Apr 13;4:e06481 [PMID: 25866927]
  71. Neuroimage. 2012 Feb 1;59(3):2142-54 [PMID: 22019881]
  72. PLoS One. 2013 Dec 17;8(12):e82715 [PMID: 24358220]
  73. Hum Brain Mapp. 2020 Jul;41(10):2642-2655 [PMID: 32090433]
  74. Neuroimage. 2009 Oct 1;47(4):1940-9 [PMID: 19446640]
  75. Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9318-9323 [PMID: 30150393]
  76. Biol Psychiatry. 2002 Jul 15;52(2):101-10 [PMID: 12114001]
  77. J Neurosci. 2013 Aug 28;33(35):14031-9 [PMID: 23986239]
  78. Ann N Y Acad Sci. 2011 Apr;1224:109-125 [PMID: 21251014]
  79. Cortex. 2013 Nov-Dec;49(10):2772-87 [PMID: 23831432]

Word Cloud

Created with Highcharts 10.0.0networkhandwritingdyslexiaDDchildrenfunctionalbrainnetworksDevelopmentalHandwritingneuralfMRIstudyChinese=connectivitydeficitneurological-basedlearningdisorderaffects5-175%difficultyprevailingsymptommechanismsremainelusiveUsingmagneticresonanceimagingexaminedassociatedcopyingtask17age-matched36founddyslexicsshowedreducedsensory-motorSMNvisualVNdefaultmodeDMNventralattentionVANdrawinggeometricfiguresMoreoverstrengthshowinggroupdifferencescorrelatedspeedreadingworkingmemorysuggestinglinkeddisruptionlarge-scalesupportingmotoriclinguisticexecutivecontrolprocessesTakentogetherdemonstratesalternationsunderlyprovidingnewcluebasisDisruptionFunctionalBrainNetworksUnderliesDeficitChildrenDyslexiadevelopmental

Similar Articles

Cited By (3)