Strigolactone alleviates the salinity-alkalinity stress of seedlings.

Changqing Ma, Chuanjie Bian, Wenjie Liu, Zhijuan Sun, Xiangli Xi, Dianming Guo, Xiaoli Liu, Yike Tian, Caihong Wang, Xiaodong Zheng
Author Information
  1. Changqing Ma: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  2. Chuanjie Bian: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  3. Wenjie Liu: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  4. Zhijuan Sun: College of Life Science, Qingdao Agricultural University, Qingdao, China.
  5. Xiangli Xi: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  6. Dianming Guo: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  7. Xiaoli Liu: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  8. Yike Tian: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  9. Caihong Wang: College of Horticulture, Qingdao Agricultural University, Qingdao, China.
  10. Xiaodong Zheng: College of Horticulture, Qingdao Agricultural University, Qingdao, China.

Abstract

Salinity-alkalinity stress can remarkably affect the growth and yield of apple. Strigolactone (SL) is a class of carotenoid-derived compounds that functions in stress tolerance. However, the effects and mechanism of exogenous SL on the salinity-alkalinity tolerance of apple seedlings remain unclear. Here, we assessed the effect of SL on the salinity-alkalinity stress response of seedlings. Results showed that treatment with 100 μM exogenous SL analog (GR24) could effectively alleviate salinity-alkalinity stress with higher chlorophyll content and photosynthetic rate than the apple seedlings without GR24 treatment. The mechanism was also explored: First, exogenous GR24 regulated the expression of Na+/K+ transporter genes and decreased the ratio of Na/K in the cytoplasm to maintain ion homeostasis. Second, exogenous GR24 increased the enzyme activities of superoxide, peroxidase and catalase, thereby eliminating reactive oxygen species production. Third, exogenous GR24 alleviated the high pH stress by regulating the expression of H-ATPase genes and inducing the production of organic acid. Last, exogenous GR24 application increased endogenous acetic acid, abscisic acid, zeatin riboside, and GA3 contents for co-responding to salinity-alkalinity stress indirectly. This study will provide important theoretical basis for analyzing the mechanism of exogenous GR24 in improving salinity-alkalinity tolerance of apple.

Keywords

References

  1. Nat Rev Mol Cell Biol. 2022 May 5;: [PMID: 35513717]
  2. Biotechnol Genet Eng Rev. 2003;20:261-75 [PMID: 14997855]
  3. Ecotoxicol Environ Saf. 2021 Sep 1;220:112369 [PMID: 34090109]
  4. Plant Cell. 2020 Oct;32(10):3124-3138 [PMID: 32796126]
  5. Plant Cell Rep. 2019 Feb;38(2):221-241 [PMID: 30511183]
  6. J Exp Bot. 2015 Aug;66(16):4863-71 [PMID: 25911740]
  7. Annu Rev Biophys. 2011;40:243-66 [PMID: 21351879]
  8. Environ Sci Pollut Res Int. 2019 Sep;26(27):27761-27768 [PMID: 31342350]
  9. Ecotoxicol Environ Saf. 2018 Jan;147:935-944 [PMID: 29029379]
  10. BMC Plant Biol. 2016 Apr 14;16:86 [PMID: 27079791]
  11. Plant Cell Environ. 2010 Apr;33(4):453-67 [PMID: 19712065]
  12. BMC Plant Biol. 2021 Jul 10;21(1):331 [PMID: 34246235]
  13. Plant Physiol. 2018 Nov;178(3):1284-1295 [PMID: 30185442]
  14. Plant Physiol. 2013 Dec;163(4):1817-28 [PMID: 24134886]
  15. PLoS One. 2019 Dec 23;14(12):e0226542 [PMID: 31869357]
  16. Plant Physiol Biochem. 2020 Dec;157:79-92 [PMID: 33096513]
  17. BMC Plant Biol. 2015 Dec 29;15:303 [PMID: 26715057]
  18. Sci Rep. 2020 Apr 10;10(1):6183 [PMID: 32277136]
  19. Plant Physiol Biochem. 2019 Feb;135:99-110 [PMID: 30529172]
  20. Plant Cell. 2019 Dec;31(12):3073-3091 [PMID: 31575723]
  21. Methods Mol Biol. 2018;1696:205-215 [PMID: 29086406]
  22. Environ Sci Pollut Res Int. 2018 Oct;25(30):30199-30211 [PMID: 30155630]
  23. Ecotoxicol Environ Saf. 2020 Apr 15;193:110259 [PMID: 32097787]
  24. Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14319-14324 [PMID: 31235564]
  25. Mol Genet Genomics. 2008 Dec;280(6):535-46 [PMID: 18813955]
  26. PLoS One. 2018 Jul 25;13(7):e0201124 [PMID: 30044859]
  27. BMC Genomics. 2019 May 9;20(1):353 [PMID: 31072309]
  28. Plant Physiol Biochem. 2021 Jul;164:237-246 [PMID: 34015689]
  29. Front Plant Sci. 2016 Feb 08;7:81 [PMID: 26904053]
  30. Plant Physiol Biochem. 2020 Feb;147:77-90 [PMID: 31846851]
  31. Plant Signal Behav. 2019;14(3):e1573097 [PMID: 30720384]
  32. New Phytol. 2018 Jan;217(2):523-539 [PMID: 29205383]
  33. Plant Physiol Biochem. 2017 Oct;119:59-69 [PMID: 28843889]
  34. Planta. 2021 Jul 9;254(2):28 [PMID: 34241703]
  35. BMC Plant Biol. 2018 Dec 29;18(1):375 [PMID: 30594151]
  36. BMC Plant Biol. 2015 Jul 07;15:170 [PMID: 26149720]
  37. Plant Physiol Biochem. 2020 Jan;146:98-111 [PMID: 31734522]
  38. Trends Plant Sci. 2020 Nov;25(11):1117-1130 [PMID: 32675014]
  39. New Phytol. 2016 Sep;211(4):1295-310 [PMID: 27198693]
  40. Protoplasma. 2016 Nov;253(6):1541-1556 [PMID: 26631016]
  41. Nature. 2018 Nov;563(7733):652-656 [PMID: 30464344]
  42. Plant Physiol Biochem. 2020 Dec;157:402-415 [PMID: 33197729]
  43. Plant Physiol Biochem. 2021 Oct;167:400-409 [PMID: 34411779]
  44. BMC Plant Biol. 2019 Feb 1;19(1):48 [PMID: 30709373]
  45. Plant Biotechnol J. 2019 Jul;17(7):1316-1332 [PMID: 30575255]
  46. Molecules. 2017 Sep 13;22(9): [PMID: 28902159]
  47. New Phytol. 2018 Aug;219(3):972-989 [PMID: 29851105]
  48. BMC Plant Biol. 2017 Feb 10;17(1):41 [PMID: 28187710]
  49. Funct Plant Biol. 2012 Sep;39(8):699-707 [PMID: 32480821]
  50. Front Plant Sci. 2020 Feb 06;11:38 [PMID: 32117377]
  51. Plant Sci. 2021 Sep;310:110976 [PMID: 34315592]
  52. New Phytol. 2016 Dec;212(4):954-963 [PMID: 27716937]
  53. Front Plant Sci. 2019 Jul 03;10:863 [PMID: 31333702]
  54. Nature. 2016 Aug 25;536(7617):469-73 [PMID: 27479325]
  55. Plant Physiol Biochem. 2021 Feb;159:113-122 [PMID: 33359960]
  56. Front Plant Sci. 2016 Mar 31;7:347 [PMID: 27066020]
  57. Physiol Plant. 2016 Apr;156(4):468-77 [PMID: 26477612]
  58. J Exp Bot. 2021 Mar 29;72(7):2450-2462 [PMID: 33345278]

Word Cloud

Created with Highcharts 10.0.0stressexogenoussalinity-alkalinityGR24appleSLseedlingstolerancemechanismacidStrigolactonetreatmentexpressionNa/KgenesionhomeostasisincreasedproductionSalinity-alkalinitycanremarkablyaffectgrowthyieldclasscarotenoid-derivedcompoundsfunctionsHowevereffectsremainunclearassessedeffectresponseResultsshowed100μManalogeffectivelyalleviatehigherchlorophyllcontentphotosyntheticratewithoutalsoexplored:FirstregulatedtransporterdecreasedratiocytoplasmmaintainSecondenzymeactivitiessuperoxideperoxidasecatalasetherebyeliminatingreactiveoxygenspeciesThirdalleviatedhighpHregulatingH-ATPaseinducingorganicLastapplicationendogenousaceticabscisiczeatinribosideGA3contentsco-respondingindirectlystudywillprovideimportanttheoreticalbasisanalyzingimprovingalleviatesMalushupehensisoxidativestrigolactone

Similar Articles

Cited By (9)