Current practices for QSP model assessment: an IQ consortium survey.
Jason R Chan, Richard Allen, Britton Boras, Antonio Cabal, Valeriu Damian, Francis D Gibbons, Abhishek Gulati, Iraj Hosseini, Jeffrey D Kearns, Ryuta Saito, Lourdes Cucurull-Sanchez, Jangir Selimkhanov, Andrew M Stein, Kenichi Umehara, Guanyu Wang, Weirong Wang, Susana Neves-Zaph
Author Information
Jason R Chan: Global PKPD and Pharmacometrics, Eli Lilly and Company, Indianapolis, IN, 46285, USA. jrchan@lilly.com.
Richard Allen: Worldwide Research, Development and Medical, Pfizer Inc. Kendall Square, Cambridge, MA, 02139, USA.
Britton Boras: Worldwide Research, Development and Medical, Pfizer Inc.,, La Jolla, CA, 92121, USA.
Antonio Cabal: Eisai Inc., NJ, Nutley, USA.
Valeriu Damian: GlaxoSmithKline, Collegeville, PA, 19426, USA.
Francis D Gibbons: , Takeda, Cambridge, MA, 02139, USA.
Abhishek Gulati: Merck & Co. Inc., Rahway, NJ, USA.
Iraj Hosseini: Genentech Inc., South San Francisco, CA, 94080, USA.
Jeffrey D Kearns: Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA.
Quantitative Systems Pharmacology (QSP) modeling is increasingly applied in the pharmaceutical industry to influence decision making across a wide range of stages from early discovery to clinical development to post-marketing activities. Development of standards for how these models are constructed, assessed, and communicated is of active interest to the modeling community and regulators but is complicated by the wide variability in the structures and intended uses of the underlying models and the diverse expertise of QSP modelers. With this in mind, the IQ Consortium conducted a survey across the pharmaceutical/biotech industry to understand current practices for QSP modeling. This article presents the survey results and provides insights into current practices and methods used by QSP practitioners based on model type and the intended use at various stages of drug development. The survey also highlights key areas for future development including better integration with statistical methods, standardization of approaches towards virtual populations, and increased use of QSP models for late-stage clinical development and regulatory submissions.
Sorger PK et al (2011) Quantitative and systems pharmacology in the post-genomic era: new approaches to discovering drugs and understanding therapeutic mechanisms. An NIH white paper by the QSP workshop group. NIH, Bethesda, pp 1���48
Nijsen MJMA, Wu F, Bansal L, Bradshaw-Pierce E, Chan JR, Liederer BM, Mettetal JT, Schroeder P, Schuck E, Tsai A, Xu C, Chimalakonda A, Le K, Penney M, Topp B, Yamada A, Spilker ME (2018) Preclinical QSP modeling in the pharmaceutical industry: an IQ consortium survey examining the current landscape. CPT Pharmacometrics Syst Pharmacol 7(3):135���146
[DOI: 10.1002/psp4.12282]
Bai JPF, Schmidt BJ, Gadkar KG, Damian V, Earp JC, Friedrich C, van der Graaf PH, Madabushi R, Musante CJ, Naik K, Rogge M, Zhu H (2021) FDA-industry scientific exchange on assessing quantitative systems pharmacology models in clinical drug development: a meeting report, summary of challenges/gaps, and future perspective. AAPS J 23(3):60
[DOI: 10.1208/s12248-021-00585-x]
https://www.fda.gov/drugs/development-resources/model-informed-drug-development-pilot-program (accessed 8 April 2022)
Bai JPF, Earp JC, Florian J, Madabushi R, Strauss DG, Wang Y, Zhu H (2021) Quantitative systems pharmacology: landscape analysis of regulatory submissions to the US Food and Drug Administration. CPT Pharmacometrics Syst Pharmacol 10(12):1479���1484
[DOI: 10.1002/psp4.12709]
Zineh I (2019) Quantitative systems pharmacology: a regulatory perspective on translation. CPT Pharmacometrics Syst Pharmacol. 8(6):336���339
[DOI: 10.1002/psp4.12403]
Shebley M, Sandhu P, Emami Riedmaier A, Jamei M, Narayanan R, Patel A, Peters SA, Reddy VP, Zheng M, de Zwart L, Beneton M, Bouzom F, Chen J, Chen Y, Cleary Y, Collins C, Dickinson GL, Djebli N, Einolf HJ, Gardner I, Huth F, Kazmi F, Khalil F, Lin J, Odinecs A, Patel C, Rong H, Schuck E, Sharma P, Wu SP, Xu Y, Yamazaki S, Yoshida K, Rowland M (2018) Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective. Clin Pharmacol Ther 104(1):88���110
[DOI: 10.1002/cpt.1013]
El-Khateeb E, Burkhill S, Murby S, Amirat H, Rostami-Hodjegan A, Ahmad A (2021) Physiological-based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20-years; in-depth analysis of applications, organizations, and platforms. Biopharm Drug Dispos 42(4):107���117
[DOI: 10.1002/bdd.2257]
Braakman S, Pathmanathan P, Moore H (2021) Evaluation framework for systems models. CPT Pharmacometrics Syst Pharmacol. https://doi.org/10.1002/psp4.12755
[DOI: 10.1002/psp4.12755]
Ramanujan S, Chan JR, Friedrich CM, Thalhauser CJ (2019) A flexible approach for context-dependent assessment of quantitative systems pharmacology models. CPT Pharmacometrics Syst Pharmacol 8(6):340���343
[DOI: 10.1002/psp4.12409]
Gadkar, K, Feigelman, J, Sukumaran, S, Rodrigo, M, Staton, T, Cai, F, Bauer, R, Choy, DF, Stokes, CL, Scheerens, H, Ramanujan S. Integrated systems modeling of severe asthma: exploration of IL-33/ST2 antagonism. Accepted pending minor revisions, CPT-PSP.
Rogers KV, Martin SW, Bhattacharya I, Singh RSP, Nayak S (2021) A dynamic quantitative systems pharmacology model of inflammatory bowel disease: part 1���model framework. Clin Transl Sci 14(1):239���248
[DOI: 10.1111/cts.12849]
DILIsym Services, Inc. https://www.simulations-plus.com/software/nafldsym/ (accessed 17 May 2022)
Peterson MC, Riggs MM (2012) Predicting nonlinear changes in bone mineral density over time using a multiscale systems pharmacology model. CPT Pharmacometrics Syst Pharmacol 1(11):e14
[DOI: 10.1038/psp.2012.15]
Dai W, Rao R, Sher A, Tania N, Musante CJ, Allen R (2021) A prototype QSP model of the immune response to SARS-CoV-2 for community development. CPT Pharmacometrics Syst Pharmacol 10(1):18���29
[DOI: 10.1002/psp4.12574]
van der Graaf PH, Benson N (2018) The role of quantitative systems pharmacology in the design of first-in-human trials. Clin Pharmacol Ther 104(5):797
[DOI: 10.1002/cpt.1145]
Blake K, Bonelli M, Ponzano S, Enzmann H (2018) European medicines agency committee for human medicinal products ���First-in-Human Guideline Drafting Group���, response to: the role of quantitative systems pharmacology in the design of first-in-human trials. Clin Pharmacol Ther. 104(5):798
[DOI: 10.1002/cpt.1148]
Khurana M, Zadezensky I, Lowy N, Roman D, Guettier JM, Li L, Florian J, Sahajwalla CG, Sinha V, Mehrotra N (2019) Use of a systems pharmacology model based approach toward dose optimization of parathyroid hormone therapy in hypoparathyroidism. Clin Pharmacol Ther 105(3):710���718
[DOI: 10.1002/cpt.1200]
Venkatakrishnan K, van der Graaf PH (2021) Model-informed drug development: connecting the dots with a totality of evidence mindset to advance therapeutics. Clin Pharmacol Ther 110(5):1147���1154
[DOI: 10.1002/cpt.2422]
Ma H, Wang H, Sov�� RJ, Wang J, Giragossian C, Popel AS (2020) Combination therapy with T cell engager and PD-L1 blockade enhances the antitumor potency of T cells as predicted by a QSP model. J Immunother Cancer 8(2):e001141
[DOI: 10.1136/jitc-2020-001141]
Hart T, Xie L (2016) Providing data science support for systems pharmacology and its implications to drug discovery. Expert Opin Drug Discov 11(3):241���256
[DOI: 10.1517/17460441.2016.1135126]
Ermakov S, Schmidt BJ, Musante CJ, Thalhauser CJ (2019) A survey of software tool utilization and capabilities for quantitative systems pharmacology: what we have and what we need. CPT Pharmacometrics Syst Pharmacol 8(2):62���76
[DOI: 10.1002/psp4.12373]
Lapteva L, Pariser AR (2016) Investigational new drug applications: a 1-year pilot study on rates and reasons for clinical hold. J Investig Med. 64(2):376���82
[DOI: 10.1136/jim-2015-000010]
Wang EB, Shen L, Heathman M, Chan JR (2019) Incorporating placebo response in quantitative systems pharmacology models. CPT Pharmacometrics Syst Pharmacol 8(6):344���346
[DOI: 10.1002/psp4.12412]
Cucurull-Sanchez L, Chappell MJ, Chelliah V, Amy Cheung SY, Derks G, Penney M, Phipps A, Malik-Sheriff RS, Timmis J, Tindall MJ, van der Graaf PH, Vicini P, Yates JWT (2019) Best practices to maximize the use and reuse of quantitative and systems pharmacology models: recommendations from the united kingdom quantitative and systems pharmacology network. CPT Pharmacometrics Syst Pharmacol 8(5):259���272
[DOI: 10.1002/psp4.12381]
Kuemmel C, Yang Y, Zhang X, Florian J, Zhu H, Tegenge M, Huang SM, Wang Y, Morrison T, Zineh I (2020) Consideration of a credibility assessment framework in model-informed drug development: potential application to physiologically-based pharmacokinetic modeling and simulation. CPT Pharmacometrics Syst Pharmacol 9(1):21���28
[DOI: 10.1002/psp4.12479]
Rostami-Hodjegan A, Bois FY (2021) Opening a debate on open-source modeling tools: pouring fuel on fire versus extinguishing the flare of a healthy debate. CPT Pharmacometrics Syst Pharmacol 10(5):420���427
[DOI: 10.1002/psp4.12615]
Skottheim Rusten I, Musuamba FT (2021) Scientific and regulatory evaluation of empirical pharmacometric models: an application of the risk informed credibility assessment framework. CPT Pharmacometrics Syst Pharmacol 10(11):1281���1296
[DOI: 10.1002/psp4.12708]
Stein AM, Kearns JD, Kim J, Margolskee A (2021) Cheat sheet for model uncertainty assessment. Zenodo. https://doi.org/10.5281/zenodo.4409236
[DOI: 10.5281/zenodo.4409236]
Friedrich CM (2016) A model qualification method for mechanistic physiological QSP models to support model-informed drug development. CPT Pharmacometrics Syst Pharmacol 5(2):43���53
[DOI: 10.1002/psp4.12056]
Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014) UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph 20(12):1983���1992
[DOI: 10.1109/TVCG.2014.2346248]
Conway JR, Lex A, Gehlenborg N (2017) UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33(18):2938���2940
[DOI: 10.1093/bioinformatics/btx364]