Authentication of Edible Insects' Powders by the Combination of DART-HRMS Signatures: The First Application of Ambient Mass Spectrometry to Screening of Novel Food.

Alessandra Tata, Andrea Massaro, Filippo Marzoli, Brunella Miano, Marco Bragolusi, Roberto Piro, Simone Belluco
Author Information
  1. Alessandra Tata: Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy. ORCID
  2. Andrea Massaro: Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy.
  3. Filippo Marzoli: Department of Food Safety, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy. ORCID
  4. Brunella Miano: Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy.
  5. Marco Bragolusi: Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy. ORCID
  6. Roberto Piro: Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, 36100 Vicenza, Italy. ORCID
  7. Simone Belluco: Department of Food Safety, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy. ORCID

Abstract

This feasibility study reports the use of direct analysis in real-time high-resolution mass spectrometry (DART-HRMS) in profiling the powders from edible insects, as well as the potential for the identification of different insect species by classification modeling. The basis of this study is the revolution that has occurred in the field of analytical chemistry, with the improved capability of ambient mass spectrometry to authenticate food matrices. In this study, we applied DART-HRMS, coupled with mid-level data fusion and a learning method, to discriminate between (house cricket), (yellow mealworm), (migratory locust), and (silk moth). A distinct metabolic fingerprint was observed for each edible insect species, while the fingerprint was characterized by highly abundant linolenic acid and quinic acid; palmitic and oleic acids are the statistically predominant fatty acids in black soldier fly (). Our chemometrics also revealed that the amino acid proline is a discriminant molecule in , whereas palmitic and linoleic acids are the most informative molecular features of the house cricket (). Good separation between the four different insect species was achieved, and cross-validation gave 100% correct identification for all training samples. The performance of the random forest classifier was examined on a test set and produced excellent results, in terms of overall accuracy, sensitivity, and specificity. These results demonstrate the reliability of the DART-HRMS as a screening method in a future quality control scenario to detect complete substitution of insect powders.

Keywords

References

  1. Anal Chem. 2017 Jul 18;89(14):7719-7726 [PMID: 28586212]
  2. Sci Rep. 2022 May 5;12(1):7360 [PMID: 35513691]
  3. Trends Genet. 2013 Apr;29(4):206-14 [PMID: 23261029]
  4. Chemosphere. 2022 Jan;287(Pt 3):132306 [PMID: 34826946]
  5. PLoS One. 2017 Aug 24;12(8):e0183188 [PMID: 28837591]
  6. Anal Bioanal Chem. 2014 Jan;406(1):63-80 [PMID: 24036523]
  7. Rapid Commun Mass Spectrom. 2015 Nov 15;29(21):2007-12 [PMID: 26443400]
  8. J Appl Microbiol. 2022 Feb;132(2):1479-1488 [PMID: 34543502]
  9. BMC Bioinformatics. 2010 Apr 27;11:206 [PMID: 20420717]
  10. Sci Rep. 2015 Jul 09;5:11520 [PMID: 26156000]
  11. Foods. 2021 May 10;10(5): [PMID: 34068654]
  12. EFSA J. 2021 Jan 13;19(1):e06343 [PMID: 33488808]
  13. Metabolites. 2021 Sep 28;11(10): [PMID: 34677375]
  14. J Sci Food Agric. 2012 Jul;92(9):1988-93 [PMID: 22290445]

Grants

  1. 2019-4753/Cariplo Fundation
  2. AZIONE 1.1.4/POR FESR Regione Veneto

Word Cloud

Created with Highcharts 10.0.0DART-HRMSinsectstudyspecieshousecricketacidacidsmassspectrometrypowdersedibleidentificationdifferentdatafusionmethodyellowmealwormmigratorylocustsilkmothfingerprintpalmiticresultsfeasibilityreportsusedirectanalysisreal-timehigh-resolutionprofilinginsectswellpotentialclassificationmodelingbasisrevolutionoccurredfieldanalyticalchemistryimprovedcapabilityambientauthenticatefoodmatricesappliedcoupledmid-levellearningdiscriminatedistinctmetabolicobservedcharacterizedhighlyabundantlinolenicquinicoleicstatisticallypredominantfattyblacksoldierflychemometricsalsorevealedaminoprolinediscriminantmoleculewhereaslinoleicinformativemolecularfeaturesGoodseparationfourachievedcross-validationgave100%correcttrainingsamplesperformancerandomforestclassifierexaminedtestsetproducedexcellenttermsoverallaccuracysensitivityspecificitydemonstratereliabilityscreeningfuturequalitycontrolscenariodetectcompletesubstitutionAuthenticationEdibleInsects'PowdersCombinationSignatures:FirstApplicationAmbientMassSpectrometryScreeningNovelFoodfingerprintingfrauds

Similar Articles

Cited By