Bayesian Modeling of COVID-19 to Classify the Infection and Death Rates in a Specific Duration: The Case of Algerian Provinces.

Hani Amir Aouissi, Ahmed Hamimes, Mostefa Ababsa, Lavinia Bianco, Christian Napoli, Feriel Kheira Kebaili, Andrey E Krauklis, Hafid Bouzekri, Kuldeep Dhama
Author Information
  1. Hani Amir Aouissi: Scientific and Technical Research Center on Arid Regions (CRSTRA), Biskra 07000, Algeria. ORCID
  2. Ahmed Hamimes: Faculty of Medicine, University of Constantine 3, Constantine 25000, Algeria. ORCID
  3. Mostefa Ababsa: Scientific and Technical Research Center on Arid Regions (CRSTRA), Biskra 07000, Algeria. ORCID
  4. Lavinia Bianco: Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
  5. Christian Napoli: Department of Medical Surgical Sciences and Translational Medicine, "Sapienza" University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy. ORCID
  6. Feriel Kheira Kebaili: Laboratoire de Recherche et d'Etude en Aménagement et Urbanisme (LREAU), Université des Sciences et de la Technologie (USTHB), Algiers 16000, Algeria.
  7. Andrey E Krauklis: Institute for Mechanics of Materials, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia. ORCID
  8. Hafid Bouzekri: Department of Forest Management, Higher National School of Forests, Khenchela 40000, Algeria.
  9. Kuldeep Dhama: Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India. ORCID

Abstract

COVID-19 causes acute respiratory illness in humans. The direct consequence of the spread of the virus is the need to find appropriate and effective solutions to reduce its spread. Similar to other countries, the pandemic has spread in Algeria, with noticeable variation in mortality and infection rates between regions. We aimed to estimate the proportion of people who died or became infected with SARS-CoV-2 in each provinces using a Bayesian approach. The estimation parameters were determined using a binomial distribution along with an a priori distribution, and the results had a high degree of accuracy. The Bayesian model was applied during the third wave (1 January-15 August 2021), in all Algerian's provinces. For spatial analysis of duration, geographical maps were used. Our findings show that Tissemsilt, Ain Defla, Illizi, El Taref, and Ghardaia (Mean = 0.001) are the least affected provinces in terms of COVID-19 mortality. The results also indicate that Tizi Ouzou (Mean = 0.0694), Boumerdes (Mean = 0.0520), Annaba (Mean = 0.0483), Tipaza (Mean = 0.0524), and Tebessa (Mean = 0.0264) are more susceptible to infection, as they were ranked in terms of the level of corona infections among the 48 provinces of the country. Their susceptibility seems mainly due to the population density in these provinces. Additionally, it was observed that northeast Algeria, where the population is concentrated, has the highest infection rate. Factors affecting mortality due to COVID-19 do not necessarily depend on the spread of the pandemic. The proposed Bayesian model resulted in being useful for monitoring the pandemic to estimate and compare the risks between provinces. This statistical inference can provide a reasonable basis for describing future pandemics in other world geographical areas.

Keywords

References

  1. J Thorac Dis. 2020 Mar;12(3):165-174 [PMID: 32274081]
  2. Healthcare (Basel). 2022 Jul 19;10(7): [PMID: 35885867]
  3. Can Commun Dis Rep. 2022 Jan 26;48(1):27-38 [PMID: 35273467]
  4. Comput Math Methods Med. 2020 Mar 26;2020:7243976 [PMID: 32300373]
  5. Bull Natl Res Cent. 2020;44(1):180 [PMID: 33100825]
  6. Bull Natl Res Cent. 2020;44(1):138 [PMID: 32843835]
  7. Chaos. 2021 Mar;31(3):033135 [PMID: 33810722]
  8. Psychon Bull Rev. 2018 Feb;25(1):143-154 [PMID: 26968853]
  9. Infect Dis Model. 2020 Jul 04;5:409-441 [PMID: 32691015]
  10. Curr Infect Dis Rep. 2021;23(12):28 [PMID: 34924819]
  11. Innovation (Camb). 2021 Oct 28;2(4):100179 [PMID: 34877560]
  12. Value Health. 2019 Sep;22(9):1012-1017 [PMID: 31511177]
  13. Glob Health Med. 2021 Dec 31;3(6):413-414 [PMID: 35036625]
  14. Int J Environ Res Public Health. 2015 Dec 08;12(12):15550-8 [PMID: 26670237]
  15. Front Public Health. 2022 May 16;10:896343 [PMID: 35651866]
  16. New Microbes New Infect. 2021 May;41:100846 [PMID: 33614039]
  17. Lancet. 2020 Feb 29;395(10225):689-697 [PMID: 32014114]
  18. BMJ Glob Health. 2021 Aug;6(8): [PMID: 34385162]
  19. Curr Pharm Biotechnol. 2019;20(8):643-652 [PMID: 30961489]
  20. GeoJournal. 2023;88(1):1175-1180 [PMID: 35261429]
  21. Sci Total Environ. 2009 Dec 20;408(2):242-4 [PMID: 19836825]
  22. Int J Environ Res Public Health. 2021 Oct 16;18(20): [PMID: 34682618]
  23. Clin Microbiol Rev. 2020 Jun 24;33(4): [PMID: 32580969]
  24. Bull Natl Res Cent. 2021;45(1):112 [PMID: 34149279]
  25. Suicide Life Threat Behav. 2020 Dec;50(6):1140-1148 [PMID: 32589811]
  26. Res Soc Stratif Mobil. 2011 Sep 1;29(3):343-349 [PMID: 22043133]
  27. Lancet Respir Med. 2021 May;9(5):449 [PMID: 33571466]
  28. Int J Disaster Risk Reduct. 2021 Sep;63:102468 [PMID: 34307013]
  29. J Asian Afr Stud. 2021 Nov;56(7):1738-1754 [PMID: 38603075]
  30. J Rural Health. 2020 Jun;36(3):433-445 [PMID: 32543763]
  31. Bull Natl Res Cent. 2021;45(1):94 [PMID: 34035647]
  32. Int J Environ Res Public Health. 2020 May 27;17(11): [PMID: 32471066]
  33. PeerJ. 2021 Feb 3;9:e10861 [PMID: 33604196]
  34. GeoJournal. 2022;87(5):3607-3620 [PMID: 34149148]
  35. J Rural Health. 2020 Sep;36(4):591-601 [PMID: 32602983]
  36. J Clin Med. 2020 Feb 07;9(2): [PMID: 32046137]
  37. Beni Suef Univ J Basic Appl Sci. 2021;10(1):46 [PMID: 34426791]

MeSH Term

Algeria
Bayes Theorem
COVID-19
Humans
Pandemics
SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0provincesMean=0COVID-19BayesianspreadmortalityinfectionpandemicAlgeriamodelratesestimateusingapproachbinomialdistributionresultsgeographicaltermsduepopulationcausesacuterespiratoryillnesshumansdirectconsequencevirusneedfindappropriateeffectivesolutionsreduceSimilarcountriesnoticeablevariationregionsaimedproportionpeoplediedbecameinfectedSARS-CoV-2estimationparametersdeterminedalongpriorihighdegreeaccuracyappliedthirdwave1January-15August2021Algerian'sspatialanalysisdurationmapsusedfindingsshowTissemsiltAinDeflaIlliziElTarefGhardaia001leastaffectedalsoindicateTiziOuzou0694Boumerdes0520Annaba0483Tipaza0524Tebessa0264susceptiblerankedlevelcoronainfectionsamong48countrysusceptibilityseemsmainlydensityAdditionallyobservednortheastconcentratedhighestrateFactorsaffectingnecessarilydependproposedresultedusefulmonitoringcomparerisksstatisticalinferencecanprovidereasonablebasisdescribingfuturepandemicsworldareasModelingClassifyInfectionDeathRatesSpecificDuration:CaseAlgerianProvinces

Similar Articles

Cited By