The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens.

Marina P Slezina, Ekaterina A Istomina, Ekaterina V Kulakovskaya, Tatyana V Korostyleva, Tatyana I Odintsova
Author Information
  1. Marina P Slezina: Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia. ORCID
  2. Ekaterina A Istomina: Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia. ORCID
  3. Ekaterina V Kulakovskaya: Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, 142290 Pushchino, Russia.
  4. Tatyana V Korostyleva: Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia.
  5. Tatyana I Odintsova: Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia. ORCID

Abstract

Antimicrobial peptides (AMPs) constitute an essential part of the plant immune system. They are regarded as alternatives to conventional antibiotics and pesticides. In this study, we have identified the γ-core motifs, which are associated with antimicrobial activity, in 18 AMPs from grasses and assayed their antimicrobial properties against nine pathogens, including yeasts affecting humans, as well as plant pathogenic bacteria and fungi. All the tested peptides displayed antimicrobial properties. We discovered a number of short AMP-derived peptides with high antimicrobial activity both against human and plant pathogens. For the first time, antimicrobial activity was revealed in the peptides designed from the 4-Cys-containing defensin-like peptides, whose role in plant immunity has remained unknown, as well as the knottin-like peptide and the C-terminal prodomain of the thionin, which points to the direct involvement of these peptides in defense mechanisms. Studies of the mode of action of the eight most active γ-core motif peptides on yeast cells using staining with propidium iodide showed that all of them induced membrane permeabilization leading to cell lysis. In addition to identification of the antimicrobial determinants in plant AMPs, this work provides short candidate peptide molecules for the development of novel drugs effective against opportunistic fungal infections and biopesticides to control plant pathogens.

Keywords

References

  1. Microbiol Spectr. 2017 Jan;5(1): [PMID: 28155813]
  2. Curr Opin Plant Biol. 2015 Aug;26:57-63 [PMID: 26116977]
  3. Front Microbiol. 2021 Feb 17;12:632008 [PMID: 33679660]
  4. Virulence. 2022 Dec;13(1):89-121 [PMID: 34964702]
  5. Cell Mol Life Sci. 2013 Oct;70(19):3545-70 [PMID: 23381653]
  6. Pharmacol Rev. 2003 Mar;55(1):27-55 [PMID: 12615953]
  7. Biopolymers. 2008;90(3):369-83 [PMID: 18098173]
  8. Bioinformatics. 2008 Sep 15;24(18):2101-2 [PMID: 18662927]
  9. Front Cell Dev Biol. 2021 Apr 12;9:649875 [PMID: 33912564]
  10. Fungal Biol. 2019 Aug;123(8):555-557 [PMID: 31345409]
  11. Int J Mol Sci. 2021 May 27;22(11): [PMID: 34072144]
  12. Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):16043-16054 [PMID: 32571919]
  13. Sci Transl Med. 2012 Dec 19;4(165):165rv13 [PMID: 23253612]
  14. Curr Issues Mol Biol. 2021 Sep 24;43(3):1226-1242 [PMID: 34698084]
  15. Mol Plant Pathol. 2012 Aug;13(6):614-29 [PMID: 22672649]
  16. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  17. Sci Rep. 2021 May 10;11(1):9923 [PMID: 33972675]
  18. Nucleic Acids Res. 2016 Jul 8;44(W1):W449-54 [PMID: 27131374]
  19. Biochim Biophys Acta. 2006 Sep;1758(9):1436-49 [PMID: 16678118]
  20. Trends Microbiol. 2020 Feb;28(2):163-164 [PMID: 31703846]
  21. Pathogens. 2019 Nov 05;8(4): [PMID: 31694319]
  22. J Fungi (Basel). 2021 Oct 25;7(11): [PMID: 34829188]
  23. Front Plant Sci. 2020 Apr 23;11:465 [PMID: 32391035]
  24. PeerJ. 2019 Jan 8;7:e6125 [PMID: 30643692]
  25. Peptides. 2005 Nov;26(11):2064-73 [PMID: 16269343]
  26. Front Microbiol. 2020 Jun 18;11:1307 [PMID: 32625188]
  27. J Appl Microbiol. 2021 Nov;131(5):2095-2113 [PMID: 33556223]
  28. Plant Physiol. 1995 Nov;109(3):813-20 [PMID: 8552715]
  29. Phytother Res. 2021 Jan;35(1):256-277 [PMID: 32940412]
  30. Nat Ecol Evol. 2019 Mar;3(3):430-439 [PMID: 30718852]
  31. Plant Mol Biol. 1993 Dec;23(6):1233-42 [PMID: 8292787]
  32. Biomolecules. 2020 Jul 10;10(7): [PMID: 32664422]
  33. Indian J Med Microbiol. 2018 Jan-Mar;36(1):8-17 [PMID: 29735820]
  34. Nature. 2002 Jan 24;415(6870):389-95 [PMID: 11807545]
  35. Nucleic Acids Res. 2016 Jan 4;44(D1):D1094-7 [PMID: 26467475]
  36. Bot Stud. 2021 Apr 29;62(1):5 [PMID: 33914180]
  37. Proc Natl Acad Sci U S A. 2004 May 11;101(19):7363-8 [PMID: 15118082]
  38. Pharmaceuticals (Basel). 2015 Nov 16;8(4):711-57 [PMID: 26580629]
  39. Annu Rev Phytopathol. 2019 Aug 25;57:323-339 [PMID: 31226019]

Grants

  1. 22-16-00010/Russian Science Foundation

MeSH Term

Anti-Bacterial Agents
Antimicrobial Peptides
Bacteria
Humans
Peptides
Plants
Poaceae

Chemicals

Anti-Bacterial Agents
Antimicrobial Peptides
Peptides

Word Cloud

Created with Highcharts 10.0.0peptidesplantantimicrobialAMPsactivityγ-corepathogenspathogenicpropertiesyeastswellbacteriashorthumanpeptidenovelAntimicrobialconstituteessentialpartimmunesystemregardedalternativesconventionalantibioticspesticidesstudyidentifiedmotifsassociated18grassesassayednineincludingaffectinghumansfungitesteddisplayeddiscoverednumberAMP-derivedhighfirsttimerevealeddesigned4-Cys-containingdefensin-likewhoseroleimmunityremainedunknownknottin-likeC-terminalprodomainthioninpointsdirectinvolvementdefensemechanismsStudiesmodeactioneightactivemotifyeastcellsusingstainingpropidiumiodideshowedinducedmembranepermeabilizationleadingcelllysisadditionidentificationdeterminantsworkprovidescandidatemoleculesdevelopmentdrugseffectiveopportunisticfungalinfectionsbiopesticidescontrolγ-CoreMotifPeptidesGrassesDisplayInhibitoryActivityHumanPlantPathogensFusariumspeciesantimicrobials

Similar Articles

Cited By