Immunomodulatory mechanisms of abatacept: A therapeutic strategy for COVID-19.
Dinglong Yang, Hetong Li, Yujing Chen, Weiping Ren, Mingjie Dong, Chunjiang Li, Qiang Jiao
Author Information
Dinglong Yang: Second Clinical Medical College, Shanxi Medical University, Taiyuan, China.
Hetong Li: Second Clinical Medical College, Shanxi Medical University, Taiyuan, China.
Yujing Chen: School of Public Health, Xi'an Jiaotong University, Xi'an, China.
Weiping Ren: Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China.
Mingjie Dong: Second Clinical Medical College, Shanxi Medical University, Taiyuan, China.
Chunjiang Li: Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China.
Qiang Jiao: Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China.
中文译文
English
Coronavirus disease 2019 (COVID-19) caused by coronavirus-2 (SARS-CoV-2) infection has rapidly spread throughout the world and become a major threat to human beings. Cytokine storm is a major cause of death in severe patients. Abatacept can suppress cytokines used as antirheumatic drugs in clinical applications. This study analyzed the molecular mechanisms of abatacept treatment for COVID-19. Differentially expressed genes (DEGs) were identified by analyzing expression profiling of abatacept treatment for rheumatoid arthritis (RA) patients and SARS-CoV-2 infection patients. We found that 59 DEGs were upregulated in COVID-19 patients and downregulated following abatacept treatment. Gene set enrichment analysis (GSEA) and Gene Ontology (GO) analysis showed that immune and inflammatory responses were potential regulatory mechanisms. Moreover, we verified 8 targeting genes and identified 15 potential drug candidates for the treatment of COVID-19. Our study illustrated that abatacept could be a promising property for preventing severe COVID-19, and we predicted alternative potential drugs for the treatment of SARS-CoV-2 infection.
Gut. 2020 Jun;69(6):1002-1009
[PMID: 32213556 ]
Genomics Inform. 2021 Jun;19(2):e14
[PMID: 34261299 ]
Front Endocrinol (Lausanne). 2021 Jun 16;12:644055
[PMID: 34220703 ]
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734
[PMID: 32376634 ]
Horm Metab Res. 2020 Sep;52(9):639-641
[PMID: 32629518 ]
Cancer Biol Med. 2020 Aug 15;17(3):519-527
[PMID: 32944387 ]
Med Hypotheses. 2020 Sep;142:109826
[PMID: 32416415 ]
Cell Death Differ. 2020 May;27(5):1451-1454
[PMID: 32205856 ]
JAMA. 2020 Apr 7;323(13):1239-1242
[PMID: 32091533 ]
Brief Bioinform. 2021 Sep 2;22(5):
[PMID: 33839760 ]
J Clin Invest. 2020 May 1;130(5):2620-2629
[PMID: 32217835 ]
Int Immunopharmacol. 2021 Jul;96:107612
[PMID: 33823429 ]
Sci Rep. 2021 Jun 1;11(1):11462
[PMID: 34075090 ]
Arch Iran Med. 2020 Apr 01;23(4):268-271
[PMID: 32271601 ]
Science. 2015 Jan 23;347(6220):1260419
[PMID: 25613900 ]
Int J Antimicrob Agents. 2020 May;55(5):105954
[PMID: 32234467 ]
Bioinformatics. 2009 Apr 15;25(8):1091-3
[PMID: 19237447 ]
Int J Infect Dis. 2021 Sep;110:320-329
[PMID: 34273515 ]
Front Public Health. 2021 Sep 28;9:729559
[PMID: 34650951 ]
Molecules. 2021 Dec 09;26(24):
[PMID: 34946540 ]
OMICS. 2012 May;16(5):284-7
[PMID: 22455463 ]
Med Res Rev. 2021 Mar;41(2):1167-1194
[PMID: 33185926 ]
Genome Biol. 2014;15(12):550
[PMID: 25516281 ]
J Eur Acad Dermatol Venereol. 2021 Jan;35(1):e13-e15
[PMID: 32977363 ]
Expert Rev Clin Immunol. 2019 Apr;15(4):319-326
[PMID: 30730220 ]
J Microbiol. 2021 Feb;59(2):124-131
[PMID: 33527314 ]
Clin Infect Dis. 2020 Nov 19;71(16):2167-2173
[PMID: 32444880 ]
Mol Med. 2021 Dec 3;27(1):151
[PMID: 34861818 ]
Curr Protoc. 2021 Mar;1(3):e90
[PMID: 33780170 ]
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W214-20
[PMID: 20576703 ]
Arch Bronconeumol. 2021 Jan;57:1-2
[PMID: 34629622 ]
Saudi J Biol Sci. 2022 Apr;29(4):1947-1956
[PMID: 34924800 ]
Genome Res. 2003 Nov;13(11):2498-504
[PMID: 14597658 ]
Drugs. 2017 Jul;77(11):1221-1233
[PMID: 28608166 ]
Scand J Immunol. 2021 Apr;93(4):e12998
[PMID: 33190302 ]
Clin Rheumatol. 2020 Jul;39(7):2085-2094
[PMID: 32474885 ]
Scand J Immunol. 2021 Mar;93(3):e12989
[PMID: 33113222 ]
Nat Rev Microbiol. 2021 Mar;19(3):141-154
[PMID: 33024307 ]
Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613
[PMID: 30476243 ]
Lancet. 2020 Feb 15;395(10223):497-506
[PMID: 31986264 ]
Front Immunol. 2020 May 01;11:827
[PMID: 32425950 ]
Immunology. 2021 Jan;162(1):30-43
[PMID: 32935333 ]
Pharmaceuticals (Basel). 2021 Dec 02;14(12):
[PMID: 34959657 ]
Mod Rheumatol. 2021 Oct 08;:
[PMID: 34915575 ]
Lancet. 2020 Mar 28;395(10229):1033-1034
[PMID: 32192578 ]
Nucleic Acids Res. 2019 Jul 2;47(W1):W234-W241
[PMID: 30931480 ]
Lancet. 2020 Feb 15;395(10223):507-513
[PMID: 32007143 ]
J Exp Med. 2020 Jun 1;217(6):
[PMID: 32353870 ]
Endocr Metab Sci. 2021 Dec 1;5:100110
[PMID: 34396354 ]
Nat Rev Immunol. 2020 Jun;20(6):363-374
[PMID: 32346093 ]
Eur J Pharmacol. 2020 Dec 15;889:173644
[PMID: 33053381 ]
Lancet Rheumatol. 2021 Sep;3(9):e627-e637
[PMID: 34258590 ]
Biochem Genet. 2022 Jun;60(3):1076-1094
[PMID: 34787756 ]