Immunomodulatory mechanisms of abatacept: A therapeutic strategy for COVID-19.

Dinglong Yang, Hetong Li, Yujing Chen, Weiping Ren, Mingjie Dong, Chunjiang Li, Qiang Jiao
Author Information
  1. Dinglong Yang: Second Clinical Medical College, Shanxi Medical University, Taiyuan, China.
  2. Hetong Li: Second Clinical Medical College, Shanxi Medical University, Taiyuan, China.
  3. Yujing Chen: School of Public Health, Xi'an Jiaotong University, Xi'an, China.
  4. Weiping Ren: Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China.
  5. Mingjie Dong: Second Clinical Medical College, Shanxi Medical University, Taiyuan, China.
  6. Chunjiang Li: Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China.
  7. Qiang Jiao: Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China.

Abstract

Coronavirus disease 2019 (COVID-19) caused by coronavirus-2 (SARS-CoV-2) infection has rapidly spread throughout the world and become a major threat to human beings. Cytokine storm is a major cause of death in severe patients. Abatacept can suppress cytokines used as antirheumatic drugs in clinical applications. This study analyzed the molecular mechanisms of abatacept treatment for COVID-19. Differentially expressed genes (DEGs) were identified by analyzing expression profiling of abatacept treatment for rheumatoid arthritis (RA) patients and SARS-CoV-2 infection patients. We found that 59 DEGs were upregulated in COVID-19 patients and downregulated following abatacept treatment. Gene set enrichment analysis (GSEA) and Gene Ontology (GO) analysis showed that immune and inflammatory responses were potential regulatory mechanisms. Moreover, we verified 8 targeting genes and identified 15 potential drug candidates for the treatment of COVID-19. Our study illustrated that abatacept could be a promising property for preventing severe COVID-19, and we predicted alternative potential drugs for the treatment of SARS-CoV-2 infection.

Keywords

References

  1. Gut. 2020 Jun;69(6):1002-1009 [PMID: 32213556]
  2. Genomics Inform. 2021 Jun;19(2):e14 [PMID: 34261299]
  3. Front Endocrinol (Lausanne). 2021 Jun 16;12:644055 [PMID: 34220703]
  4. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734 [PMID: 32376634]
  5. Horm Metab Res. 2020 Sep;52(9):639-641 [PMID: 32629518]
  6. Cancer Biol Med. 2020 Aug 15;17(3):519-527 [PMID: 32944387]
  7. Med Hypotheses. 2020 Sep;142:109826 [PMID: 32416415]
  8. Cell Death Differ. 2020 May;27(5):1451-1454 [PMID: 32205856]
  9. JAMA. 2020 Apr 7;323(13):1239-1242 [PMID: 32091533]
  10. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33839760]
  11. J Clin Invest. 2020 May 1;130(5):2620-2629 [PMID: 32217835]
  12. Int Immunopharmacol. 2021 Jul;96:107612 [PMID: 33823429]
  13. Sci Rep. 2021 Jun 1;11(1):11462 [PMID: 34075090]
  14. Arch Iran Med. 2020 Apr 01;23(4):268-271 [PMID: 32271601]
  15. Science. 2015 Jan 23;347(6220):1260419 [PMID: 25613900]
  16. Int J Antimicrob Agents. 2020 May;55(5):105954 [PMID: 32234467]
  17. Bioinformatics. 2009 Apr 15;25(8):1091-3 [PMID: 19237447]
  18. Int J Infect Dis. 2021 Sep;110:320-329 [PMID: 34273515]
  19. Front Public Health. 2021 Sep 28;9:729559 [PMID: 34650951]
  20. Molecules. 2021 Dec 09;26(24): [PMID: 34946540]
  21. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  22. Med Res Rev. 2021 Mar;41(2):1167-1194 [PMID: 33185926]
  23. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  24. J Eur Acad Dermatol Venereol. 2021 Jan;35(1):e13-e15 [PMID: 32977363]
  25. Expert Rev Clin Immunol. 2019 Apr;15(4):319-326 [PMID: 30730220]
  26. J Microbiol. 2021 Feb;59(2):124-131 [PMID: 33527314]
  27. Clin Infect Dis. 2020 Nov 19;71(16):2167-2173 [PMID: 32444880]
  28. Mol Med. 2021 Dec 3;27(1):151 [PMID: 34861818]
  29. Curr Protoc. 2021 Mar;1(3):e90 [PMID: 33780170]
  30. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W214-20 [PMID: 20576703]
  31. Arch Bronconeumol. 2021 Jan;57:1-2 [PMID: 34629622]
  32. Saudi J Biol Sci. 2022 Apr;29(4):1947-1956 [PMID: 34924800]
  33. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  34. Drugs. 2017 Jul;77(11):1221-1233 [PMID: 28608166]
  35. Scand J Immunol. 2021 Apr;93(4):e12998 [PMID: 33190302]
  36. Clin Rheumatol. 2020 Jul;39(7):2085-2094 [PMID: 32474885]
  37. Scand J Immunol. 2021 Mar;93(3):e12989 [PMID: 33113222]
  38. Nat Rev Microbiol. 2021 Mar;19(3):141-154 [PMID: 33024307]
  39. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 [PMID: 30476243]
  40. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  41. Front Immunol. 2020 May 01;11:827 [PMID: 32425950]
  42. Immunology. 2021 Jan;162(1):30-43 [PMID: 32935333]
  43. Pharmaceuticals (Basel). 2021 Dec 02;14(12): [PMID: 34959657]
  44. Mod Rheumatol. 2021 Oct 08;: [PMID: 34915575]
  45. Lancet. 2020 Mar 28;395(10229):1033-1034 [PMID: 32192578]
  46. Nucleic Acids Res. 2019 Jul 2;47(W1):W234-W241 [PMID: 30931480]
  47. Lancet. 2020 Feb 15;395(10223):507-513 [PMID: 32007143]
  48. J Exp Med. 2020 Jun 1;217(6): [PMID: 32353870]
  49. Endocr Metab Sci. 2021 Dec 1;5:100110 [PMID: 34396354]
  50. Nat Rev Immunol. 2020 Jun;20(6):363-374 [PMID: 32346093]
  51. Eur J Pharmacol. 2020 Dec 15;889:173644 [PMID: 33053381]
  52. Lancet Rheumatol. 2021 Sep;3(9):e627-e637 [PMID: 34258590]
  53. Biochem Genet. 2022 Jun;60(3):1076-1094 [PMID: 34787756]

Word Cloud

Created with Highcharts 10.0.0COVID-19abatacepttreatmentpatientsSARS-CoV-2infectionmechanismsgenespotentialmajorstormseveredrugsstudyDEGsidentifiedGeneanalysisimmuneinflammatoryresponsesCoronavirusdisease2019causedcoronavirus-2rapidlyspreadthroughoutworldbecomethreathumanbeingsCytokinecausedeathAbataceptcansuppresscytokinesusedantirheumaticclinicalapplicationsanalyzedmolecularDifferentiallyexpressedanalyzingexpressionprofilingrheumatoidarthritisRAfound59upregulateddownregulatedfollowingsetenrichmentGSEAOntologyGOshowedregulatoryMoreoververified8targeting15drugcandidatesillustratedpromisingpropertypreventingpredictedalternativeImmunomodulatoryabatacept:therapeuticstrategycytokinetarget

Similar Articles

Cited By