Sorbents for Atmospheric Water Harvesting: From Design Principles to Applications.
Wen Shi, Weixin Guan, Chuxin Lei, Guihua Yu
Author Information
Wen Shi: Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
Weixin Guan: Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
Chuxin Lei: Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
Guihua Yu: Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA. ORCID
Water scarcity caused by climate change and population growth poses a grave threat to human society. Of the different water purification technologies put forward, one presents a promising strategy that is spatially or temporally non-restricted-atmospheric water harvesting (AWH). Here we review recent progress in the design and study of AWH sorbents, ranging from the innovative chemistries to the integration of sophisticated architectures and functional components, and clarify the structure-property-performance relationship that governs the water capture and release processes. Features and limitations of each type of sorbents are summarized to elucidate the optimal working environments and modes. Progress in applications extending from water generation to thermal management and agriculture are discussed. Future developments regarding material modifications, performance measurements, and system optimizations are provided to overcome lingering barriers to sorbent design and implementation.
S. Jasechko, D. Perrone, Science 2021, 372, 418-421.
C. He, Z. Liu, J. Wu, X. Pan, Z. Fang, J. Li, B. A. Bryan, Nat. Commun. 2021, 12, 4667.
A. Alkhudhiri, N. Darwish, N. Hilal, Desalination 2012, 287, 2-18;
J. R. Werber, C. O. Osuji, M. Elimelech, Nat. Rev. Mater. 2016, 1, 16018;
W. Wang, Y. Shi, C. Zhang, S. Hong, L. Shi, J. Chang, R. Li, Y. Jin, C. Ong, S. Zhuo, P. Wang, Nat. Commun. 2019, 10, 3012;
H. Lu, W. Shi, F. Zhao, W. Zhang, P. Zhang, C. Zhao, G. Yu, Adv. Mater. 2021, 33, 2170135.
L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, P. Moulin, Water Res. 2009, 43, 2317-2348;
Y. Yao, P. Zhang, C. Jiang, R. M. DuChanois, X. Zhang, M. Elimelech, Nat. Sustainability 2021, 4, 138-146.
F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Nat. Rev. Mater. 2020, 5, 388-401;
H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Nat. Commun. 2014, 5, 4449;
F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. MendFGez, R. Yang, L. Qu, G. Yu, Nat. Nanotechnol. 2018, 13, 489-495;
X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Sci. Adv. 2019, 5, eaaw5484;
Y. Guo, G. Yu, ACS Mater. Lett. 2022, 4, 713-714;
X. Zhou, F. Zhao, P. Zhang, G. Yu, ACS Mater. Lett. 2021, 3, 1112-1129;
Y. Guo, L. Vasconcelos, N. Manohar, J. Geng, K. Johnston, G. Yu, Angew. Chem. Int. Ed. 2022, 61, e202114074;
Angew. Chem. 2022, 134, e202114074.
M. Fessehaye, S. A. Abdul-Wahab, M. J. Savage, T. Kohler, T. Gherezghiher, H. Hurni, Renewable Sustainable Energy Rev. 2014, 29, 52-62;
M. Tomaszkiewicz, M. A. Najm, D. Beysens, I. Alameddine, M. El-Fadel, Environ. Rev. 2015, 23, 425-442.
X. Zhou, H. Lu, F. Zhao, G. Yu, ACS Mater. Lett. 2020, 2, 671-684;
A. LaPotin, H. Kim, S. R. Rao, E. N. Wang, Acc. Chem. Res. 2019, 52, 1588-1597;
H. Lu, W. Shi, Y. Guo, W. Guan, C. Lei, G. Yu, Adv. Mater. 2022, 34, 2110079;
X. Zhou, Y. Guo, F. Zhao, G. Yu, Acc. Chem. Res. 2019, 52, 3244-3253;
Y. Guo, Z. Fang, G. Yu, Polym. Int. 2021, 70, 1425-1432;
C. Lei, Y. Guo, W. Guan, G. Yu, J. Polym. Sci. 2021, 59, 3084-3099.
F. Fathieh, M. J. Kalmutzki, E. A. Kapustin, P. J. Waller, J. Yang, O. M. Yaghi, Sci. Adv. 2018, 4, eaat3198.
Y. Guo, W. Guan, C. Lei, H. Lu, W. Shi, G. Yu, Nat. Commun. 2022, 13, 2761.
N. Hanikel, M. S. Prévot, O. M. Yaghi, Nat. Nanotechnol. 2020, 15, 348-355.
J. Lyklema, in Fundamentals of Interface and Colloid Science, Vol. 2 (Ed.: J. Lyklema), Academic Press, San Diego, 1995, pp. 1-118.
G. Fagerlund, Matériaux Construction 1973, 6, 239-245;
K. Kolasinski, in Surfare Science, Wiley, Hoboken, 2012, pp. 185-228.
H. Swenson, N. P. Stadie, Langmuir 2019, 35, 5409-5426.
H. Naono, R. Fujiwara, M. Yagi, J. Colloid Interface Sci. 1980, 76, 74-82;
M. Chen, B. Coasne, R. Guyer, D. Derome, J. Carmeliet, Nat. Commun. 2018, 9, 3507.
L. T. Zhuravlev, Colloids Surf. A 2000, 173, 1-38.
C. Li, J. Zhu, M. Zhou, S. Zhang, X. He, Materials 2019, 12, 1782.
X. Li, Z. Li, Q. Xia, H. Xi, Appl. Therm. Eng. 2007, 27, 869-876.
K. C. Ng, H. T. Chua, C. Y. Chung, C. H. Loke, T. Kashiwagi, A. Akisawa, B. B. Saha, Appl. Therm. Eng. 2001, 21, 1631-1642.
K. R. Iler, The chemistry of silica: Solubility, polymerization, colloid and surface properties and biochemistry of silica, Wiley, New York, 1979.
F. Benaliouche, N. Hidous, M. Guerza, Y. Zouad, Y. Boucheffa, Microporous Mesoporous Mater. 2015, 209, 184-188;
J. M. Newsam, Science 1986, 231, 1093-1099.
E.-P. Ng, S. Mintova, Microporous Mesoporous Mater. 2008, 114, 1-26.
R. Szostak, Handbook of molecular sieves: structures, Springer Science & Business Media, 1992;
M. Tatlier, G. Munz, S. K. Henninger, Microporous Mesoporous Mater. 2018, 264, 70-75.
Y. Yuan, H. Zhang, F. Yang, N. Zhang, X. Cao, Renewable Sustainable Energy Rev. 2016, 54, 761-776;
M. B. Jakubinek, B.-Z. Zhan, M. A. White, Microporous Mesoporous Mater. 2007, 103, 108-112.
J. Alcañiz-Monge, A. Linares-Solano, B. Rand, J. Phys. Chem. B 2002, 106, 3209-3216;
D. D. Do, H. D. Do, Carbon 2000, 38, 767-773;
L. Sarkisov, A. Centineo, S. Brandani, Carbon 2017, 118, 127-138.
L. Liu, S. Tan, T. Horikawa, D. D. Do, D. Nicholson, J. Liu, Adv. Colloid Interface Sci. 2017, 250, 64-78.
M. J. Kalmutzki, C. S. Diercks, O. M. Yaghi, Adv. Mater. 2018, 30, 1704304;
W. Xu, O. M. Yaghi, ACS Cent. Sci. 2020, 6, 1348-1354.
W. S. Drisdell, R. Poloni, T. M. McDonald, J. R. Long, B. Smit, J. B. Neaton, D. Prendergast, J. B. Kortright, J. Am. Chem. Soc. 2013, 135, 18183-18190.
P. D. C. Dietzel, R. E. Johnsen, R. Blom, H. Fjellvåg, Chem. Eur. J. 2008, 14, 2389-2397.
N. Hanikel, X. Pei, S. Chheda, H. Lyu, W. Jeong, J. Sauer, L. Gagliardi, O. M. Yaghi, Science 2021, 374, 454-459.
K. S. W. Sing, Pure Appl. Chem. 1985, 57, 603-619;
H. Marsh, F. R. Reinoso, Activated carbon, Elsevier, Amsterdam, 2006.
G. Akiyama, R. Matsuda, H. Sato, A. Hori, M. Takata, S. Kitagawa, Microporous Mesoporous Mater. 2012, 157, 89-93.
F.-X. Coudert, A. Boutin, A. H. Fuchs, A. V. Neimark, J. Phys. Chem. Lett. 2013, 4, 3198-3205.
A. V. Neimark, F.-X. Coudert, C. Triguero, A. Boutin, A. H. Fuchs, I. Beurroies, R. Denoyel, Langmuir 2011, 27, 4734-4741.
N. C. Burtch, H. Jasuja, K. S. Walton, Chem. Rev. 2014, 114, 10575-10612.
H. J. Choi, M. Dincă, A. Dailly, J. R. Long, Energy Environ. Sci. 2010, 3, 117-123;
V. Colombo, S. Galli, H. J. Choi, G. D. Han, A. Maspero, G. Palmisano, N. Masciocchi, J. R. Long, Chem. Sci. 2011, 2, 1311-1319.
I. J. Kang, N. A. Khan, E. Haque, S. H. Jhung, Chem. Eur. J. 2011, 17, 6437-6442.
H. Li, W. Shi, K. Zhao, H. Li, Y. Bing, P. Cheng, Inorg. Chem. 2012, 51, 9200-9207.
Z. Chen, P. Li, X. Zhang, P. Li, M. C. Wasson, T. Islamoglu, J. F. Stoddart, O. K. Farha, J. Am. Chem. Soc. 2019, 141, 2900-2905.
W. Zhang, H. Huang, D. Liu, Q. Yang, Y. Xiao, Q. Ma, C. Zhong, Microporous Mesoporous Mater. 2013, 171, 118-124;
J. J. Low, A. I. Benin, P. Jakubczak, J. F. Abrahamian, S. A. Faheem, R. R. Willis, J. Am. Chem. Soc. 2009, 131, 15834-15842.
H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 4369-4381.
H. Jasuja, K. S. Walton, Dalton Trans. 2013, 42, 15421-15426.
S. J. Yang, S. Nam, T. Kim, J. H. Im, H. Jung, J. H. Kang, S. Wi, B. Park, C. R. Park, J. Am. Chem. Soc. 2013, 135, 7394-7397.
T. Li, J. E. Sullivan, N. L. Rosi, J. Am. Chem. Soc. 2013, 135, 9984-9987.
J. B. Decoste, G. W. Peterson, M. W. Smith, C. A. Stone, C. R. Willis, J. Am. Chem. Soc. 2012, 134, 1486-1489.
H. Furukawa, Y. B. Go, N. Ko, Y. K. Park, F. J. Uribe-Romo, J. Kim, M. O'Keeffe, O. M. Yaghi, Inorg. Chem. 2011, 50, 9147-9152.
H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424-428;
B. Chen, M. Eddaoudi, S. T. Hyde, M. O'Keeffe, O. M. Yaghi, Science 2001, 291, 1021-1023.
A. M. Wright, A. J. Rieth, S. Yang, E. N. Wang, M. Dincă, Chem. Sci. 2018, 9, 3856-3859.
G. Edgar, W. O. Swan, J. Am. Chem. Soc. 1922, 44, 570-577;
A. Ertas, E. E. Anderson, I. Kiris, Sol. Energy 1992, 49, 205-212.
Y. Zhang, R. Wang, T. Li, Y. Zhao, Energies 2016, 9, 854;
J. Xu, T. Li, J. Chao, S. Wu, T. Yan, W. Li, B. Cao, R. Wang, Angew. Chem. Int. Ed. 2020, 59, 5202-5210;
Angew. Chem. 2020, 132, 5240-5248.
A. A. Merdaw, A. O. Sharif, G. A. W. Derwish, Chem. Eng. J. 2011, 168, 229-240.
C. Peng, L. Chen, M. Tang, Fundam. Res. 2022, 2, 578-587.
R. Li, Y. Shi, M. Wu, S. Hong, P. Wang, Nano Energy 2020, 67, 104255.
L. Guo, W. Gu, C. Peng, W. Wang, Y. J. Li, T. Zong, Y. Tang, Z. Wu, Q. Lin, M. Ge, Atmos. Chem. Phys. 2019, 19, 2115-2133.
R. Li, Y. Shi, L. Shi, M. Alsaedi, P. Wang, Environ. Sci. Technol. 2018, 52, 5398-5406.
A. Entezari, M. Ejeian, R. Wang, Appl. Therm. Eng. 2019, 161, 114109;
H. Zhao, Z. Wang, Q. Li, T. Wu, M. Zhang, Q. Shi, Microporous Mesoporous Mater. 2020, 299, 110109.
A. Permyakova, S. Wang, E. Courbon, F. Nouar, N. Heymans, P. D′Ans, N. Barrier, P. Billemont, G. De Weireld, N. Steunou, M. Frère, C. Serre, J. Mater. Chem. A 2017, 5, 12889-12898;
Y. Sun, A. Spieß, C. Jansen, A. Nuhnen, S. Gökpinar, R. Wiedey, S.-J. Ernst, C. Janiak, J. Mater. Chem. A 2020, 8, 13364-13375;
Y. Luo, B. Tan, X. Liang, S. Wang, X. Gao, Z. Zhang, Y. Fang, Int. J. Energy Res. 2020, 44, 5895-5904.
K. Yang, Y. Shi, M. Wu, W. Wang, Y. Jin, R. Li, M. W. Shahzad, K. C. Ng, P. Wang, J. Mater. Chem. A 2020, 8, 1887-1895.
H. Shan, Q. Pan, C. Xiang, P. Poredoš, Q. Ma, Z. Ye, G. Hou, R. Wang, Cell Rep. Phys. Sci. 2021, 2, 100664.
J. Xu, T. Li, T. Yan, S. Wu, M. Wu, J. Chao, X. Huo, P. Wang, R. Wang, Energy Environ. Sci. 2021, 14, 5979-5994;
F. Deng, C. Wang, C. Xiang, R. Wang, Nano Energy 2021, 90, 106642.
Y. Zhang, L. Wu, X. Wang, J. Yu, B. Ding, Nat. Commun. 2020, 11, 3302.
F. Gong, H. Li, Q. Zhou, M. Wang, W. Wang, Y. Lv, R. Xiao, D. V. Papavassiliou, Nano Energy 2020, 74, 104922;
K. Lu, C. Liu, J. Liu, Y. He, X. Tian, Z. Liu, Y. Cao, Y. Shen, W. Huang, K. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 33032-33040.
P. A. Kallenberger, M. Fröba, Commun. Chem. 2018, 1, 28;
A. Entezari, M. Ejeian, R. Wang, ACS Mater. Lett. 2020, 2, 471-477;
J. Wang, C. Deng, G. Zhong, W. Ying, C. Li, S. Wang, Y. Liu, R. Wang, H. Zhang, Cell Rep. Phys. Sci. 2022, 3, 100954.
Y. S. Zhang, A. Khademhosseini, Science 2017, 356, eaaf3627;
S. Loo, L. Vásquez, A. Athanassiou, D. Fragouli, Adv. Mater. Interfaces 2021, 8, 2100580.
N. R. Richbourg, N. A. Peppas, Prog. Polym. Sci. 2020, 105, 101243.
Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao, G. Yu, Chem. Rev. 2020, 120, 7642-7707;
Y. Guo, G. Yu, Acc. Mater. Res. 2021, 2, 374-384.
L. Chen, J. Gong, Y. Osada, Macromol. Rapid Commun. 2002, 23, 171-174.
K. Matsumoto, N. Sakikawa, T. Miyata, Nat. Commun. 2018, 9, 2315;
Y. Cai, W. Shen, S. L. Loo, W. B. Krantz, R. Wang, A. G. Fane, X. Hu, Water Res. 2013, 47, 3773-3781.
T. Fujiyabu, X. Li, U.-I. Chung, T. Sakai, Macromolecules 2019, 52, 1923-1929.
C. D. Díaz-Marín, L. Zhang, Z. Lu, M. Alshrah, J. C. Grossman, E. N. Wang, Nano Lett. 2022, 22, 1100-1107.
K. Yang, T. Pan, Q. Lei, X. Dong, Q. Cheng, Y. Han, Environ. Sci. Technol. 2021, 55, 6542-6560.
Y. Tu, R. Wang, Y. Zhang, J. Wang, Joule 2018, 2, 1452-1475.
H. Lu, W. Shi, J. H. Zhang, A. C. Chen, W. Guan, C. Lei, J. R. Greer, S. V. Boriskina, G. Yu, Adv. Mater. 2022, 34, 2205344.
F. Ni, N. Qiu, P. Xiao, C. Zhang, Y. Jian, Y. Liang, W. Xie, L. Yan, T. Chen, Angew. Chem. Int. Ed. 2020, 59, 19237-19246;
Angew. Chem. 2020, 132, 19399-19408.
K. Yang, T. Pan, I. Pinnau, Z. Shi, Y. Han, Nano Energy 2020, 78, 105326.
H. Yao, P. Zhang, Y. Huang, H. Cheng, C. Li, L. Qu, Adv. Mater. 2020, 32, 1905875.
M. Wu, R. Li, Y. Shi, M. Altunkaya, S. Aleid, C. Zhang, W. Wang, P. Wang, Mater. Horiz. 2021, 8, 1518-1527.
C. Lei, Y. Guo, W. Guan, H. Lu, W. Shi, G. Yu, Angew. Chem. Int. Ed. 2022, 61, e202200271;
Angew. Chem. 2022, 134, e202200271;
C. Lei, W. Guan, Y. Guo, W. Shi, Y. Wang, K. Johnston, G. Yu, Angew. Chem. Int. Ed. 2022, 61, e202208487;
Angew. Chem. 2022, 134, e202208487.
S. Aleid, M. Wu, R. Li, W. Wang, C. Zhang, L. Zhang, P. Wang, ACS Mater. Lett. 2022, 4, 511-520.
R. Li, Y. Shi, M. Alsaedi, M. Wu, L. Shi, P. Wang, Environ. Sci. Technol. 2018, 52, 11367-11377.
F. Zhao, X. Zhou, Y. Liu, Y. Shi, Y. Dai, G. Yu, Adv. Mater. 2019, 31, 1806446.
G. Yilmaz, F. L. Meng, W. Lu, J. Abed, C. K. N. Peh, M. Gao, E. H. Sargent, G. W. Ho, Sci. Adv. 2020, 6, eabc8605.
B. Wang, X. Zhou, Z. Guo, W. Liu, Nano Today 2021, 40, 101283;
M. Ejeian, R. Z. Wang, Joule 2021, 5, 1678-1703.
H. Qi, T. Wei, W. Zhao, B. Zhu, G. Liu, P. Wang, Z. Lin, X. Wang, X. Li, X. Zhang, J. Zhu, Adv. Mater. 2019, 31, 1903378;
Y. Chen, X. Sun, C. Yan, Y. Cao, T. Mu, J. Phys. Chem. B 2014, 118, 11523-11536;
X. Wang, X. Li, G. Liu, J. Li, X. Hu, N. Xu, W. Zhao, B. Zhu, J. Zhu, Angew. Chem. Int. Ed. 2019, 58, 12054-12058;
Angew. Chem. 2019, 131, 12182-12186.
J. L. Anthony, E. J. Maginn, J. F. Brennecke, J. Phys. Chem. B 2001, 105, 10942-10949.
Y. Cao, Y. Chen, X. Sun, Z. Zhang, T. Mu, Phys. Chem. Chem. Phys. 2012, 14, 12252-12262.
Y. Chen, Y. Cao, X. Lu, C. Zhao, C. Yan, T. Mu, New J. Chem. 2013, 37, 1959-1967.
Y. Cao, X. Sun, Y. Chen, T. Mu, ACS Sustainable Chem. Eng. 2014, 2, 138-148.
C. Sullivan, Eng. Syst. 2011, 28, 38-45.
X. Zhang, J. Yang, R. Borayek, H. Qu, D. K. Nandakumar, Q. Zhang, J. Ding, S. C. Tan, Nano Energy 2020, 75, 104873.
M. Kumar, A. Yadav, Desalination 2015, 367, 216-222.
N. Hanikel, M. S. Prévot, F. Fathieh, E. A. Kapustin, H. Lyu, H. Wang, N. J. Diercks, T. G. Glover, O. M. Yaghi, ACS Cent. Sci. 2019, 5, 1699-1706.
A. LaPotin, Y. Zhong, L. Zhang, L. Zhao, A. Leroy, H. Kim, S. R. Rao, E. N. Wang, Joule 2021, 5, 166-182.
M. Dai, F. Zhao, J. Fan, Q. Li, Y. Yang, Z. Fan, S. Ling, H. Yu, S. Liu, J. Li, W. Chen, G. Yu, Adv. Mater. 2022, 34, 2200865.
X. Zhou, P. Zhang, F. Zhao, G. Yu, ACS Mater. Lett. 2020, 2, 1419-1422.
R. Li, Y. Shi, M. Wu, S. Hong, P. Wang, Nat. Sustainability 2020, 3, 636-643.
W. Gao, Z. Lei, W. Chen, Y. Chen, ACS Nano 2022, 16, 8347-8357;
Z. Lei, W. Gao, P. Wu, Joule 2021, 5, 2211-2222.
S. Pu, Y. Liao, K. Chen, J. Fu, S. Zhang, L. Ge, G. Conta, S. Bouzarif, T. Cheng, X. Hu, K. Liu, J. Chen, Nano Lett. 2020, 20, 3791-3797.
Z. Y. Zeng, B. C. Zhao, R. Z. Wang, Cell Rep. Phys. Sci. 2021, 2, 100578.
Y. Song, N. Xu, G. Liu, H. Qi, W. Zhao, B. Zhu, L. Zhou, J. Zhu, Nat. Nanotechnol. 2022, 17, 857-863.
Y. Zhang, W. Zhu, C. Zhang, J. Peoples, X. Li, A. L. Felicelli, X. Shan, D. M. Warsinger, T. Borca-Tasciuc, X. Ruan, T. Li, Nano Lett. 2022, 22, 2618-2626.
Y. Huang, C. Wang, C. Shao, B. Wang, N. Chen, H. Jin, H. Cheng, L. Qu, Acc. Mater. Res. 2021, 2, 97-107.