Geranylgeranyl pyrophosphate depletion by statins compromises skeletal muscle insulin sensitivity.

Lai Wang, Zuguo Zheng, Lijun Zhu, Lingchang Meng, Hanling Liu, Keke Wang, Jun Chen, Ping Li, Hua Yang
Author Information
  1. Lai Wang: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
  2. Zuguo Zheng: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
  3. Lijun Zhu: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
  4. Lingchang Meng: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
  5. Hanling Liu: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
  6. Keke Wang: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
  7. Jun Chen: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
  8. Ping Li: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
  9. Hua Yang: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.

Abstract

BACKGROUND: Statins are widely prescribed cholesterol-lowering drugs but have been shown to increase the risk of type 2 diabetes mellitus. However, the molecular mechanisms underlying the diabetogenic effect of statins are still not fully understood.
METHODS: The effects of geranylgeranyl transferase I and II (GGTase I and II) inhibition on insulin-stimulated glucose uptake and GLUT4 translocation, and the dependence of these effects on insulin signalling were investigated in skeletal muscle cells. The protective effects of geranylgeranyl pyrophosphate (GGPP) and its precursor geranylgeraniol (GGOH) on simvastatin-induced insulin resistance were evaluated in vitro and in vivo. The effect of GGTase II inhibition in skeletal muscle on insulin sensitivity in vivo was confirmed by adeno-associated virus serotype 9 (AAV9)-mediated knockdown of the specific subunit of GGTase II, RABGGTA. The regulatory mechanisms of GGTase I on insulin signalling and GGTase II on insulin-stimulated GLUT4 translocation were investigated by knockdown of RhoA, TAZ, IRS1, geranylgeranylation site mutation of RhoA, RAB8A, and RAB13.
RESULTS: Both inhibition of GGTase I and II mimicked simvastatin-induced insulin resistance in skeletal muscle cells. GGPP and GGOH were able to prevent simvastatin-induced skeletal muscle insulin resistance in vitro and in vivo. GGTase I inhibition suppressed the phosphorylation of AKT (Ser473) (-51.3%, P < 0.01), while GGTase II inhibition had no effect on it. AAV9-mediated knockdown of RABGGTA in skeletal muscle impaired glucose disposal without disrupting insulin signalling in vivo (-46.2% for gastrocnemius glucose uptake, P < 0.001; -52.5% for tibialis anterior glucose uptake, P < 0.001; -17.8% for soleus glucose uptake, P < 0.05; -31.4% for extensor digitorum longus glucose uptake, P < 0.01). Inhibition of RhoA, TAZ, IRS1, or geranylgeranylation deficiency of RhoA attenuated the beneficial effect of GGPP on insulin signalling in skeletal muscle cells. Geranylgeranylation deficiency of RAB8A inhibited insulin-stimulated GLUT4 translocation and concomitant glucose uptake in skeletal muscle cells (-42.8% for GLUT4 translocation, P < 0.01; -50.6% for glucose uptake, P < 0.001).
CONCLUSIONS: Geranylgeranyl pyrophosphate regulates glucose uptake via GGTase I-mediated insulin signalling-dependent way and GGTase II-mediated insulin signalling-independent way in skeletal muscle. Supplementation of GGPP/GGOH could be a potential therapeutic strategy for statin-induced insulin resistance.

Keywords

References

  1. Cell Metab. 2020 May 5;31(5):969-986.e7 [PMID: 32259482]
  2. Biochem Biophys Res Commun. 1997 Aug 28;237(3):483-7 [PMID: 9299388]
  3. J Pathol. 2016 Jan;238(1):109-19 [PMID: 26434932]
  4. J Biol Chem. 1981 Feb 25;256(4):1604-7 [PMID: 6257680]
  5. Biomed Pharmacother. 2015 May;72:24-9 [PMID: 26054671]
  6. Diabetes. 1983 Jul;32(7):675-9 [PMID: 6862113]
  7. Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.20 [PMID: 18228488]
  8. FASEB J. 2007 Dec;21(14):4087-94 [PMID: 17634390]
  9. Nat Med. 2017 Jul 11;23(7):804-814 [PMID: 28697184]
  10. Cell Metab. 2019 Apr 2;29(4):901-916.e8 [PMID: 30581121]
  11. Diabetes. 2014 Nov;63(11):3742-7 [PMID: 24917577]
  12. Nat Rev Mol Cell Biol. 2016 Feb;17(2):110-22 [PMID: 26790532]
  13. J Lipid Res. 2006 Apr;47(4):681-99 [PMID: 16477080]
  14. J Biol Chem. 2016 May 13;291(20):10726-35 [PMID: 26969162]
  15. Diabetes. 2020 Jan;69(1):48-59 [PMID: 31649162]
  16. J Lipid Res. 2006 Mar;47(3):467-75 [PMID: 16401880]
  17. Physiol Rev. 2013 Jul;93(3):993-1017 [PMID: 23899560]
  18. Sci China Life Sci. 2015 Apr;58(4):328-35 [PMID: 25862656]
  19. Mol Biol Cell. 2016 Jan 1;27(1):75-89 [PMID: 26538022]
  20. Diabetologia. 2015 Aug;58(8):1877-86 [PMID: 26024738]
  21. Microbiome. 2017 Aug 9;5(1):95 [PMID: 28793934]
  22. Am J Physiol Cell Physiol. 2008 Oct;295(4):C1016-25 [PMID: 18701652]
  23. Circulation. 2001 Jul 17;104(3):330-5 [PMID: 11457753]
  24. Cell Biol Toxicol. 2021 Jun;37(3):441-460 [PMID: 33034787]
  25. FEBS Lett. 2017 Feb;591(3):491-499 [PMID: 28079283]
  26. FEBS J. 2021 Jan;288(1):36-55 [PMID: 32542850]
  27. Gastroenterology. 2019 Nov;157(5):1293-1309 [PMID: 31302143]
  28. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4144-9 [PMID: 10737774]
  29. Autophagy. 2015 Nov 2;11(11):2089-2101 [PMID: 26389569]
  30. Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19909-14 [PMID: 21041651]
  31. Endocrinology. 2000 Jan;141(1):208-18 [PMID: 10614641]
  32. Nat Commun. 2019 Jan 24;10(1):421 [PMID: 30679431]
  33. J Cachexia Sarcopenia Muscle. 2022 Dec;13(6):2697-2711 [PMID: 35961942]
  34. Biochem Pharmacol. 2018 Apr;150:108-119 [PMID: 29338971]
  35. Ann Rheum Dis. 2014 Oct;73(10):1888-97 [PMID: 23897774]
  36. Diabetologia. 2015 May;58(5):1109-17 [PMID: 25754552]
  37. J Cell Biol. 2016 Jul 4;214(1):61-76 [PMID: 27354378]
  38. J Biol Chem. 2008 Oct 3;283(40):27208-19 [PMID: 18650435]
  39. Diabetes Care. 2020 Apr;43(4):875-884 [PMID: 32033992]
  40. Biochem J. 2016 May 15;473(10):1315-27 [PMID: 26936971]
  41. Diabetes. 2013 May;62(5):1519-26 [PMID: 23274898]
  42. Clin Pharmacol Ther. 2011 Dec;90(6):804-12 [PMID: 22048229]

MeSH Term

Humans
Insulin Resistance
Hydroxymethylglutaryl-CoA Reductase Inhibitors
Diabetes Mellitus, Type 2
Muscle, Skeletal
Insulin
Glucose
Simvastatin
rab GTP-Binding Proteins

Chemicals

geranylgeranyl pyrophosphate
Hydroxymethylglutaryl-CoA Reductase Inhibitors
Insulin
Glucose
Simvastatin
RAB13 protein, human
rab GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0insulinGGTasemuscleglucoseskeletaluptakeIIP < 0inhibitionresistanceRhoAeffectGLUT4translocationsignallingcellsGGPPvivoeffectsinsulin-stimulatedpyrophosphatesimvastatin-inducedknockdownRAB8A01001mechanismsstatinsgeranylgeranylinvestigatedGGOHvitrosensitivityRABGGTATAZIRS1geranylgeranylation8%deficiencyGeranylgeranylwayBACKGROUND:Statinswidelyprescribedcholesterol-loweringdrugsshownincreaserisktype2diabetesmellitusHowevermolecularunderlyingdiabetogenicstillfullyunderstoodMETHODS:transferasedependenceprotectiveprecursorgeranylgeraniolevaluatedconfirmedadeno-associatedvirusserotype9AAV9-mediatedspecificsubunitregulatorysitemutationRAB13RESULTS:mimickedablepreventsuppressedphosphorylationAKTSer473-513%AAV9-mediatedimpaireddisposalwithoutdisrupting-462%gastrocnemius-525%tibialisanterior-17soleus05-314%extensordigitorumlongusInhibitionattenuatedbeneficialGeranylgeranylationinhibitedconcomitant-42-506%CONCLUSIONS:regulatesviaI-mediatedsignalling-dependentII-mediatedsignalling-independentSupplementationGGPP/GGOHpotentialtherapeuticstrategystatin-induceddepletioncompromisesInsulinSkeletalStatin

Similar Articles

Cited By