Estimating SARS-CoV-2 variant fitness and the impact of interventions in England using statistical and geo-spatial agent-based models.

Robert Hinch, Jasmina Panovska-Griffiths, William J M Probert, Luca Ferretti, Chris Wymant, Francesco Di Lauro, Nikolas Baya, Mahan Ghafari, Lucie Abeler-D��rner, COVID-19 Genomics UK (COG-UK) Consortium, Christophe Fraser
Author Information
  1. Robert Hinch: Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK. ORCID
  2. Jasmina Panovska-Griffiths: Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK. ORCID
  3. William J M Probert: Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK. ORCID
  4. Luca Ferretti: Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  5. Chris Wymant: Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  6. Francesco Di Lauro: Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  7. Nikolas Baya: Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK. ORCID
  8. Mahan Ghafari: Department of Zoology, University of Oxford, Oxford, UK.
  9. Lucie Abeler-D��rner: Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  10. Christophe Fraser: Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

Abstract

The SARS-CoV-2 epidemic has been extended by the evolution of more transmissible viral variants. In autumn 2020, the B.1.177 lineage became the dominant variant in England, before being replaced by the B.1.1.7 (Alpha) lineage in late 2020, with the sweep occurring at different times in each region. This period coincided with a large number of non-pharmaceutical interventions (e.g. lockdowns) to control the epidemic, making it difficult to estimate the relative transmissibility of variants. In this paper, we model the spatial spread of these variants in England using a meta-population agent-based model which correctly characterizes the regional variation in cases and distribution of variants. As a test of robustness, we additionally estimated the relative transmissibility of multiple variants using a statistical model based on the renewal equation, which simultaneously estimates the effective reproduction number . Relative to earlier variants, the transmissibility of B.1.177 is estimated to have increased by 1.14 (1.12-1.16) and that of Alpha by 1.71 (1.65-1.77). The vaccination programme starting in December 2020 is also modelled. Counterfactual simulations demonstrate that the vaccination programme was essential for reopening in March 2021, and that if the January lockdown had started one month earlier, up to 30���k (24���k-38���k) deaths could have been prevented. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.

Keywords

References

  1. Science. 2020 Oct 30;370(6516):564-570 [PMID: 32912998]
  2. PLoS One. 2007 Aug 22;2(8):e758 [PMID: 17712406]
  3. Science. 2020 May 8;368(6491): [PMID: 32234805]
  4. Nat Rev Microbiol. 2008 Jun;6(6):477-87 [PMID: 18533288]
  5. Science. 2007 Jun 1;316(5829):1298-301 [PMID: 17540894]
  6. R Soc Open Sci. 2021 Apr 7;8(4):202091 [PMID: 33868698]
  7. Nature. 2021 Jan;589(7842):337-338 [PMID: 33452508]
  8. PLoS Comput Biol. 2021 Jul 12;17(7):e1009146 [PMID: 34252083]
  9. BMJ. 2021 Mar 31;372:n608 [PMID: 33789843]
  10. Science. 2021 Aug 20;373(6557):889-895 [PMID: 34301854]
  11. Lancet Infect Dis. 2021 Jun;21(6):793-802 [PMID: 33743847]
  12. Am J Epidemiol. 2013 Nov 1;178(9):1505-12 [PMID: 24043437]
  13. Proc Biol Sci. 2007 Feb 22;274(1609):599-604 [PMID: 17476782]
  14. Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2752-2757 [PMID: 29483256]
  15. R Soc Open Sci. 2021 Jul 7;8(7):210506 [PMID: 34295529]
  16. Proc Natl Acad Sci U S A. 2021 May 4;118(18): [PMID: 33926962]
  17. Lancet. 2021 Oct 16;398(10309):1407-1416 [PMID: 34619098]
  18. Lancet Child Adolesc Health. 2020 Nov;4(11):817-827 [PMID: 32758453]
  19. Philos Trans A Math Phys Eng Sci. 2022 Oct 3;380(2233):20210304 [PMID: 35965459]
  20. Nat Commun. 2021 Apr 12;12(1):2188 [PMID: 33846321]
  21. NPJ Digit Med. 2021 Mar 12;4(1):49 [PMID: 33712693]
  22. Nature. 2020 Aug;584(7820):257-261 [PMID: 32512579]
  23. Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6146-51 [PMID: 15071187]
  24. BMC Med. 2020 Nov 4;18(1):346 [PMID: 33143712]
  25. Proc Natl Acad Sci U S A. 2021 Jul 13;118(28): [PMID: 34187879]
  26. Nature. 2021 Dec;600(7889):506-511 [PMID: 34649268]
  27. Nature. 2021 Jul;595(7869):707-712 [PMID: 34098568]
  28. Science. 2021 Apr 9;372(6538): [PMID: 33658326]
  29. BMJ. 2021 Nov 17;375:e068302 [PMID: 34789505]
  30. PLoS Comput Biol. 2020 Dec 10;16(12):e1008409 [PMID: 33301457]
  31. Science. 2021 Feb 12;371(6530):708-712 [PMID: 33419936]
  32. R Soc Open Sci. 2020 Nov 25;7(11):201726 [PMID: 33391818]
  33. J Stat Softw. 2017;76: [PMID: 36568334]
  34. Nat Med. 2020 Aug;26(8):1205-1211 [PMID: 32546824]
  35. Science. 2001 Oct 26;294(5543):813-7 [PMID: 11679661]
  36. Lancet. 2021 Apr 10;397(10282):1351-1362 [PMID: 33798499]
  37. PLoS Comput Biol. 2021 Jul 26;17(7):e1009149 [PMID: 34310589]
  38. Nature. 2021 May;593(7858):266-269 [PMID: 33767447]
  39. Epidemics. 2021 Sep;36:100472 [PMID: 34153623]

Grants

  1. /Wellcome Trust
  2. MC_PC_19027/Medical Research Council

MeSH Term

COVID-19
Communicable Disease Control
Humans
SARS-CoV-2
Seasons

Word Cloud

Created with Highcharts 10.0.01variantsmodelSARS-CoV-22020BEnglandtransmissibilityusingagent-basedstatisticalepidemic177lineagevariantAlphanumberinterventionsrelativeestimatedearliervaccinationprogrammegeo-spatialextendedevolutiontransmissibleviralautumnbecamedominantreplaced7latesweepoccurringdifferenttimesregionperiodcoincidedlargenon-pharmaceuticaleglockdownscontrolmakingdifficultestimatepaperspatialspreadmeta-populationcorrectlycharacterizesregionalvariationcasesdistributiontestrobustnessadditionallymultiplebasedrenewalequationsimultaneouslyestimateseffectivereproductionRelativeincreased1412-1167165-177startingDecemberalsomodelledCounterfactualsimulationsdemonstrateessentialreopeningMarch2021Januarylockdownstartedonemonth30���k24���k-38���kdeathspreventedarticlepartthemeissue'Technicalchallengesmodellingreal-lifeepidemicsexamplesovercomingthese'Estimatingfitnessimpactmodelsvaccinationsvirus

Similar Articles

Cited By