Comprehensive evaluation of the response to aluminum stress in olive tree ( L.).

Erli Niu, Song Gao, Xiaomin Yu, Ali Soleimani, Shenlong Zhu
Author Information
  1. Erli Niu: Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
  2. Song Gao: Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
  3. Xiaomin Yu: Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
  4. Ali Soleimani: Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
  5. Shenlong Zhu: Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Abstract

Olive ( L.) is an ancient tree species in the Mediterranean, but the lack of knowledge about aluminum-resistant varieties limits its introduction to acidic soil. The objective of this study was to have a comprehensive evaluation of the response to aluminum stress in olive tree at germplasm, metabolome, and transcriptome levels. In this experiment, seedlings of 97 olive germplasm with 1.0-3.0 cm roots and two leaves were treated with 50 μM Al (pH = 5.0). By factor analysis of the traits of defoliation rate, rooting rate, length of extended root, and length of new root, 97 germplasm were classified into five different groups according to their diverse responses to aluminum stress: 5 highly resistant (5.15%), 30 moderately resistant (30.93%), 31 general (31.96%), 23 moderately sensitive (23.71%), and 8 highly sensitive (8.25%) germplasm. The three most sensitive and three most resistant germplasm were further used for metabolome and transcriptome analysis. Exposed to aluminum stress, 96 differentially accumulated metabolites (DAMs)/4,845 differentially expressed genes (DEGs) and 66 DAMs/2,752 DEGs were identified in highly sensitive and resistant germplasm, respectively. Using multi-omics technology, the pathways and related DAMs/DEGs involved in cell wall/cytoplasm receptors, reactive oxygen species balance, hormone induction, synthesis of organic acids, Al transport, and synthesis of metabolites were identified to mainly regulate the response to aluminum stress in olive. This study provides a theoretical guide and prior germplasm and genes for further genetic improvement of aluminum tolerance in the olive tree.

Keywords

References

  1. Sci Total Environ. 2008 Aug 1;400(1-3):356-68 [PMID: 18657304]
  2. Sci Bull (Beijing). 2022 Jan;67(1):13-16 [PMID: 36545952]
  3. Front Plant Sci. 2018 Sep 03;9:1276 [PMID: 30233620]
  4. Int J Mol Sci. 2016 May 31;17(6): [PMID: 27258251]
  5. Front Plant Sci. 2017 Apr 04;8:475 [PMID: 28421102]
  6. New Phytol. 2003 Aug;159(2):295-314 [PMID: 33873357]
  7. Biochim Biophys Acta. 1999 Nov 16;1472(3):643-50 [PMID: 10564778]
  8. Planta. 2017 Jul;246(1):91-103 [PMID: 28365842]
  9. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9413-E9422 [PMID: 29078332]
  10. PLoS One. 2018 Jun 12;13(6):e0198589 [PMID: 29894520]
  11. Nat Genet. 2007 Sep;39(9):1156-61 [PMID: 17721535]
  12. Mol Biol Evol. 2010 Apr;27(4):862-74 [PMID: 19942615]
  13. New Phytol. 2021 Feb;229(3):1398-1414 [PMID: 32880972]
  14. Food Chem. 2021 Oct 1;358:129867 [PMID: 33979685]
  15. Mol Biol Rep. 2012 Mar;39(3):2069-79 [PMID: 21660471]
  16. Food Chem. 2020 Nov 1;329:127191 [PMID: 32505985]
  17. Plant Commun. 2021 Mar 24;2(3):100182 [PMID: 34027395]
  18. J Integr Plant Biol. 2014 Mar;56(3):221-30 [PMID: 24417891]
  19. Biol Rev Camb Philos Soc. 2012 Nov;87(4):885-99 [PMID: 22512893]
  20. Hortic Res. 2021 Apr 1;8(1):64 [PMID: 33790235]
  21. Gigascience. 2016 Jun 27;5:29 [PMID: 27346392]
  22. Plant J. 2012 Mar;69(5):857-67 [PMID: 22035218]
  23. Biomolecules. 2020 Jan 31;10(2): [PMID: 32023875]
  24. Food Chem. 2019 Dec 1;300:125246 [PMID: 31357017]
  25. J Exp Bot. 2019 Jan 1;70(1):41-54 [PMID: 30325439]
  26. PLoS Genet. 2011 Aug;7(8):e1002221 [PMID: 21829395]
  27. Plant J. 2004 Mar;37(5):645-53 [PMID: 14871306]
  28. PLoS One. 2013 Jul 26;8(7):e69776 [PMID: 23922796]
  29. Int J Mol Sci. 2021 Jun 16;22(12): [PMID: 34208600]
  30. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18381-5 [PMID: 20937890]
  31. Crit Rev Biotechnol. 2020 Sep;40(6):750-776 [PMID: 32522044]
  32. Food Chem. 2016 Mar 1;194:32-45 [PMID: 26471524]
  33. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70 [PMID: 20435677]
  34. Mol Nutr Food Res. 2007 Oct;51(10):1199-208 [PMID: 17879991]

Word Cloud

Created with Highcharts 10.0.0germplasmaluminumolivetreestressresistantsensitiveLevaluationresponsemetabolometranscriptome5highlyspeciesstudy970Alanalysisratelengthroot30moderately31238threedifferentiallymetabolitesgenesDEGsidentifiedsynthesistoleranceOliveancientMediterraneanlackknowledgealuminum-resistantvarietieslimitsintroductionacidicsoilobjectivecomprehensivelevelsexperimentseedlings10-3cmrootstwoleavestreated50μMpH=factortraitsdefoliationrootingextendednewclassifiedfivedifferentgroupsaccordingdiverseresponsesstress:15%93%general96%71%25%usedExposed96accumulatedDAMs/4845expressed66DAMs/2752respectivelyUsingmulti-omicstechnologypathwaysrelatedDAMs/DEGsinvolvedcellwall/cytoplasmreceptorsreactiveoxygenbalancehormoneinductionorganicacidstransportmainlyregulateprovidestheoreticalguidepriorgeneticimprovementComprehensiveOleaeuropaea

Similar Articles

Cited By