Mapping the forest fire risk zones using artificial intelligence with risk factors data.

Volkan Sevinç
Author Information
  1. Volkan Sevinç: Faculty of Science, Department of Statistics, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey. vsevinc@mu.edu.tr. ORCID

Abstract

Geographical information system data has been used in forest fire risk zone mapping studies commonly. However, forest fires are caused by many factors, which cannot be explained only by geographical and meteorological reasons. Human-induced factors also play an important role in occurrence of forest fires, and these factors depend on various social and economic conditions. This article aims to prepare a fire risk zone map by using a data set consisting of 11 human-induced factors, a natural factor, and temperature, which is one of the risk factors that determine the conditions for the occurrence of forest fires. Moreover, k-means clustering algorithm, which is an artificial intelligence method, was employed in preparation of the fire risk zone map. Turkey was selected as the study area because there are social and economic variations among its regions. Thus, the regional forest directorates in Turkey were separated into four clusters as extreme-risk zone, high-risk zone, moderate-risk zone, and low-risk zone. Also, a map presenting these risk zones were provided. The map reveals that, in general, the western and southwestern coastal areas of Turkey are at high risk of forest fires. On the other hand, the fire risk is relatively low in the northern, central, and eastern areas.

Keywords

References

  1. Ahmed M, Mahmood AN (2015) Novel approach for network traffic pattern analysis using clustering-based collective anomaly detection. Ann Data Sci 2(1):111–130 [DOI: 10.1007/s40745-015-0035-y]
  2. Akbulak C, Tatlı H, Aygün G, Sağlam B (2018) Forest fire risk analysis via integration of GIS, RS and AHP: the Case of Çanakkale, Turkey. J Human Sci 15(4):2127–2143
  3. Aricak B, Kucuk O, Enez K (2014) Determining a fire potential map based on stand age, stand closure and tree species, using satellite imagery (Kastamonu central forest directorate sample).  Croatian J For Eng: Theory and Application of Forestry Engineering 35(1):101–108
  4. Atesoglu A (2014) Forest fire hazard identifying. Mapping using satellite imagery-geographic information system and analytic hierarchy process: Bartin, Turkey. J Environ Prot Ecol 15(2):715–725
  5. Bahadır M (2010) Türkiye’de (1998-2007) Görülen Orman Yangınlarının Yüzey ve Rakamsal Sorgulama analizi. Nat Sci 5(3):146–162
  6. Belsoy J, Korir J, Yego J (2012) Environmental impacts of tourism in protected areas. J Environ Earth Sci 2(10):64–73
  7. Bilgili E, Küçük Ö, Sağlam B, Coşkuner KA (2021) Chapter 1: Forest fires causes, effects, monitoring, precautions and rehabilitation activities. In: Kavzoğlu T (ed) Mega forest fires: causes, organization and management. Turkish academy of sciences, science and thought series No: 33, Ankara, pp 1–23
  8. Bingöl B (2017) Determination of forest fire risk areas in Burdur Province using Geographical Information Systems. Turk J For Sci 1(2):169–182 [DOI: 10.32328/turkjforsci.319155]
  9. Blömer J, Lammersen C, Schmidt M, Sohler C (2016) Theoretical analysis of the k-means algorithm–a survey. In: Algorithm Engineering. Springer, Cham, pp 81–116 [DOI: 10.1007/978-3-319-49487-6_3]
  10. Bock HH (2008) Origins and extensions of the k-means algorithm in cluster analysis. Electron J Hist Probab Stat 4(2):1–18
  11. Buckley R (1991) Environmental impacts of recreation in parks and reserves. In: Perspectives in Environmental Management. Springer, Berlin, pp 243–258 [DOI: 10.1007/978-3-642-76502-5_13]
  12. Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat-Theory Methods 3(1):1–27 [DOI: 10.1080/03610927408827101]
  13. Coban H, Erdin C (2020) Forest fire risk assessment using GIS and AHP integration in Bucak forest enterprise, Turkey. Appl Ecol Environ Res 18(1)
  14. Curt T, Frejaville T (2018) Wildfire policy in Mediterranean France: how far is it efficient and sustainable? Risk Anal 38(3):472–488 [DOI: 10.1111/risa.12855]
  15. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 2:224–227 [DOI: 10.1109/TPAMI.1979.4766909]
  16. Diday E, Simon JC (1976) Clustering analysis. In: Digital pattern recognition. Springer, Berlin, pp 47–94 [DOI: 10.1007/978-3-642-96303-2_3]
  17. Dong XU, Li-min D, Guo-fan S, Lei T, Hui W (2005) Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China. J For Res 16(3):169–174 [DOI: 10.1007/BF02856809]
  18. Elibüyük M, Yılmaz E (2010) Türkiye’nin coğrafi bölge ve bölümlerine göre yükselti basamakları ve eğim grupları. Coğrafi Bilimler Dergisi 8(1):27–56 [DOI: 10.1501/Cogbil_0000000104]
  19. Erten E, Kurgun V, Musaoglu N (2004) Forest fire risk zone mapping from satellite imagery and GIS: a case study. In: Altan O (ed) XXth International Society for Photogrammetry and Remote Sensing Congress Youth Forum. ISPRS Archives, Volume XXXV, Part B8, Istanbul, Turkey, pp 222–230
  20. Erten E, Kurgun V, Musaoğlu N (2005) Forest Fire Risk Zone Mapping by Using Satellite Imagery and GIS (in Turkish). TMMOB Harita ve Kadastro Mühendisleri Odası. https://obs.hkmo.org.tr/show-media/resimler/ekler/NDKO_109_ek.pdf . Accessed 5 July 20
  21. Everitt BS, Landau S, Leese M, Stahl D (2011) Cluster analysis. John Wiley & Sons, Hoboken [DOI: 10.1002/9780470977811]
  22. FAO (2007) Fire management global assessment 2006. In: A thematic study prepared in the framework of the Global Forest Resources Assessment 2005. Food and Agriculture Organization of the United Nations, Forestry Paper 151, Rome
  23. GDF (2019) General directorate of forestry, environmental indicators, forest fires (in Turkish). https://cevreselgostergeler.csb.gov.tr/orman-yanginlari-i-85850 . Accessed 5 July 2022
  24. GDF (2021) General directorate of forestry, official statistics (in Turkish). https://www.ogm.gov.tr/tr/ormanlarimiz/resmi-istatistikler . Accessed 1 Dec 2021
  25. Ghobadi GJ, Gholizadeh B, Dashliburun OM (2012) Forest fire risk zone mapping from geographic information system in Northern Forests of Iran (Case study, Golestan province). Int J Agric Crop Sci 4(12):818–824
  26. GhulamRabbany M, Afrin S, Rahman A, Islam F, Hoque F (2013) Environmental effects of tourism. Am J Environ Energy Power Res 1(7):117–130
  27. Gülçin D, Deniz B (2020) Remote sensing and GIS-based forest fire risk zone mapping: The case of Manisa, Turkey. Türkiye Ormancılık Dergisi 21(1):15–24 [DOI: 10.18182/tjf.649747]
  28. Gupta MK, Chandra P (2020) An empirical evaluation of K-means clustering algorithm using different distance/similarity metrics. In: In Proceedings of ICETIT 2019. Springer, Cham, pp 884–892 [DOI: 10.1007/978-3-030-30577-2_79]
  29. Hassan AAH, Shah W, Husein AM, Talib MS, Mohammed AAJ, Iskandar M (2019) Clustering approach in wireless sensor networks based on K-means: Limitations and recommendations. Int J Recent Technol Eng 7(6):119–126
  30. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recogn Lett 31(8):651–666 [DOI: 10.1016/j.patrec.2009.09.011]
  31. Jaiswal RK, Mukherjee S, Raju KD, Saxena R (2002) Forest fire risk zone mapping from satellite imagery and GIS. Int J Appl Earth Obs Geoinf 4(1):1–10
  32. Joaquim GS, Bahaaeddin A, Josep RC (2007) Remote sensing analysis to detect fire risk locations. GéoCongrès-2007, Québec
  33. Karabulut M, Karakoc A, Gurbuz M, Kizilelma Y (2013) Determination of forest fire risk areas using geographical information systems in Baskonus Mountain (Kahramanmaras). J Int Soc Res 6(24):171–179
  34. Knime (2021) Knime software. https://www.knime.com/ . Accessed 1 Dec 2021
  35. Kurtulmuslu M, Yazici E (2003) Management of forest fires through the involvement of local communities in Turkey. In: Ganz D, Moore P and Reeb D (ed) Community based fire management: case studies from China, The Gambia, Honduras, India, the Lao People's Democratic Republic and Turkey. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific Bangkok, Thailand, pp 119–137
  36. Kuvan Y (2005) The use of forests for the purpose of tourism: the case of Belek Tourism Center in Turkey. J Environ Manag 75(3):263–274 [DOI: 10.1016/j.jenvman.2005.01.003]
  37. Lee RC (1981) Clustering analysis and its applications. In: Advances in information systems science. Springer, Boston, pp 169–292 [DOI: 10.1007/978-1-4613-9883-7_4]
  38. Leone V, Lovreglio R, Martín MP, Martínez J, Vilar L (2009) Human factors of fire occurrence in the Mediterranean. In: In Earth observation of wildland fires in Mediterranean ecosystems. Springer, Berlin, pp 149–170 [DOI: 10.1007/978-3-642-01754-4_11]
  39. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Lecam L and Meyman J (ed) Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, University of California Press, Berkeley and Los Angeles, 1(14), pp 281–297
  40. Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis academic press inc, 15th edn. London Ltd, London, p 518
  41. Mohammadi F, Bavaghar MP, Shabanian N (2014) Forest fire risk zone modeling using logistic regression and GIS: an Iranian case study. Small-scale For 13(1):117–125 [DOI: 10.1007/s11842-013-9244-4]
  42. Nisanci R (2010) GIS based fire analysis and production of fire-risk maps: The Trabzon experience. Sci Res Essays 5(9):970–977
  43. NPS (2022) National park service, wildfire causes and evaluations. https://www.nps.gov/articles/wildfire-causes-and-evaluation.htm . Accessed 5 July 2022
  44. Opitz T, Bonneu F, Gabriel E (2020) Point-process based Bayesian modeling of space–time structures of forest fire occurrences in Mediterranean France. Spatial Stat 40:100429 [DOI: 10.1016/j.spasta.2020.100429]
  45. Pandey K, Ghosh SK (2018) Modelling of Parameters for Forest Fire Risk Zone Mapping. ISPRS-Int Arch Photogramm Remote Sens Spat Inform Sci 42(5):299–304 [DOI: 10.5194/isprs-archives-XLII-5-299-2018]
  46. Pavlek K, Bišćević F, Furčić P, Grđan A, Gugić V, Malešić N et al (2017) Spatial patterns and drivers of fire occurrence in a Mediterranean environment: a case study of southern Croatia. Geografisk Tidsskrift-Danish J Geogr 117(1):22–35 [DOI: 10.1080/00167223.2016.1266272]
  47. Pavón D, Ventura M, Ribas A, Serra P, Sauri D, Breton F (2003) Land use change and socio-environmental conflict in the Alt Empordà county (Catalonia, Spain). J Arid Environ 54(3):543–552 [DOI: 10.1006/jare.2002.1077]
  48. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65 [DOI: 10.1016/0377-0427(87)90125-7]
  49. Sağlam B, Bilgili E, Durmaz BD, Kadıoğulları Aİ, Küçük Ö (2008) Spatio-temporal analysis of forest fire risk and danger using LANDSAT imagery. Sensors 8(6):3970–3987 [DOI: 10.3390/s8063970]
  50. Scitovski R, Sabo K, Martínez-Álvarez F, Ungar Š (2021) Cluster Analysis and Applications. Springer, Dordrecht [DOI: 10.1007/978-3-030-74552-3]
  51. Sevinc V, Kucuk O, Goltas M (2020) A Bayesian network model for prediction and analysis of possible forest fire causes. For Ecol Manag 457:117723 [DOI: 10.1016/j.foreco.2019.117723]
  52. Sharma LK, Kanga S, Nathawat MS, Sinha S, Pandey PC (2012) Fuzzy AHP for forest fire risk modeling. Disaster Prev Manag 21(2):160–171
  53. Sivrikaya F, Küçük Ö (2022) Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecol Inform 68:101537 [DOI: 10.1016/j.ecoinf.2021.101537]
  54. Sivrikaya F, Sağlam B, Akay AE, Bozali N (2014) Evaluation of forest fire risk with GIS. Pol J Environ Stud 23(1):187–194
  55. Sun D, Walsh D (1998) Review of studies on environmental impacts of recreation and tourism in Australia. J Environ Manag 53(4):323–338 [DOI: 10.1006/jema.1998.0200]
  56. Thakare YS, Bagal SB (2015) Performance evaluation of K-means clustering algorithm with various distance metrics. Int J Comput Appl 110(11):12–16
  57. TSMS (2022) Lightning risk map of Turkey (in Turkish). https://www.mgm.gov.tr/kurumsal/haberler.aspx?y=2012&f=yildirim . Accessed 5 July 2022
  58. TÜİK (2021) Address based population registration system results, 2021 (in Turkish) https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2021-45500 . Accessed 5 July 2022
  59. WHO (2022) World Health Organization, Wildfires. https://www.who.int/health-topics/wildfires#tab=tab_1 . Accessed 5 July 2022
  60. Wu J (2012) Cluster analysis and K-means clustering: an introduction. In: In Advances in K-means Clustering. Springer, Berlin, pp 1–16 [DOI: 10.1007/978-3-642-29807-3]
  61. Xu D, Shao G, Dai L, Hao Z, Tang L, Wang H (2006) Mapping forest fire risk zones with spatial data and principal component analysis. Sci China Series E: Technol Sci 49(1):140–149 [DOI: 10.1007/s11434-006-8115-1]
  62. Yathish H, Athira KV, Preethi K, Pruthviraj U, Shetty A (2019) A comparative analysis of forest fire risk zone mapping methods with expert knowledge. J Indian Soc Remote Sens 47(12):2047–2060 [DOI: 10.1007/s12524-019-01047-w]

MeSH Term

Humans
Wildfires
Fires
Artificial Intelligence
Forests
Risk Factors
Trees

Word Cloud

Created with Highcharts 10.0.0riskzoneforestfirefactorsfiresmapdataintelligenceTurkeyoccurrencesocialeconomicconditionsusingalgorithmartificialzonesareasForestGeographicalinformationsystemusedmappingstudiescommonlyHowevercausedmanyexplainedgeographicalmeteorologicalreasonsHuman-inducedalsoplayimportantroledependvariousarticleaimspreparesetconsisting11human-inducednaturalfactortemperatureonedetermineMoreoverk-meansclusteringmethodemployedpreparationselectedstudyareavariationsamongregionsThusregionaldirectoratesseparatedfourclustersextreme-riskhigh-riskmoderate-risklow-riskAlsopresentingprovidedrevealsgeneralwesternsouthwesterncoastalhighhandrelativelylownortherncentraleasternMappingArtificialK-means

Similar Articles

Cited By