Inframe insertion and splice site variants in MFGE8 associate with protection against coronary atherosclerosis.

Sanni E Ruotsalainen, Ida Surakka, Nina Mars, Juha Karjalainen, Mitja Kurki, Masahiro Kanai, Kristi Krebs, Sarah Graham, Pashupati P Mishra, Binisha H Mishra, Juha Sinisalo, Priit Palta, Terho Lehtimäki, Olli Raitakari, Estonian Biobank Research Team, Lili Milani, Biobank Japan Project, Yukinori Okada, FinnGen, Aarno Palotie, Elisabeth Widen, Mark J Daly, Samuli Ripatti
Author Information
  1. Sanni E Ruotsalainen: Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland. ORCID
  2. Ida Surakka: Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
  3. Nina Mars: Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
  4. Juha Karjalainen: The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  5. Mitja Kurki: The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  6. Masahiro Kanai: The Broad Institute of MIT and Harvard, Cambridge, MA, USA. ORCID
  7. Kristi Krebs: Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia. ORCID
  8. Sarah Graham: Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
  9. Pashupati P Mishra: Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
  10. Binisha H Mishra: Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
  11. Juha Sinisalo: Heart and Lung Center, Helsinki University Hospital and Helsinki University, Helsinki, Finland.
  12. Priit Palta: Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland. ORCID
  13. Terho Lehtimäki: Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
  14. Olli Raitakari: Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.
  15. Lili Milani: Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
  16. Yukinori Okada: Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan. ORCID
  17. Aarno Palotie: Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland. ORCID
  18. Elisabeth Widen: Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
  19. Mark J Daly: Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
  20. Samuli Ripatti: Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland. samuli.ripatti@helsinki.fi. ORCID

Abstract

Cardiovascular diseases are the leading cause of premature death and disability worldwide, with both genetic and environmental determinants. While genome-wide association studies have identified multiple genetic loci associated with cardiovascular diseases, exact genes driving these associations remain mostly uncovered. Due to Finland's population history, many deleterious and high-impact variants are enriched in the Finnish population giving a possibility to find genetic associations for protein-truncating variants that likely tie the association to a gene and that would not be detected elsewhere. In a large Finnish biobank study FinnGen, we identified an association between an inframe insertion rs534125149 in MFGE8 (encoding lactadherin) and protection against coronary atherosclerosis. This variant is highly enriched in Finland, and the protective association was replicated in meta-analysis of BioBank Japan and Estonian biobank. Additionally, we identified a protective association between splice acceptor variant rs201988637 in MFGE8 and coronary atherosclerosis, independent of the rs534125149, with no significant risk-increasing associations. This variant was also associated with lower pulse pressure, pointing towards a function of MFGE8 in arterial aging also in humans in addition to previous evidence in mice. In conclusion, our results suggest that inhibiting the production of lactadherin could lower the risk for coronary heart disease substantially.

References

  1. Bioinformatics. 2019 Nov 1;35(22):4862-4865 [PMID: 31116374]
  2. J Proteome Res. 2009 Sep;8(9):4252-63 [PMID: 19603826]
  3. Circ Res. 2009 Jun 19;104(12):1337-46 [PMID: 19443842]
  4. Nature. 2005 Sep 29;437(7059):754-8 [PMID: 16193055]
  5. Nat Genet. 2015 Oct;47(10):1121-1130 [PMID: 26343387]
  6. Nature. 2010 Oct 14;467(7317):832-8 [PMID: 20881960]
  7. Int J Mol Med. 2010 Feb;25(2):237-48 [PMID: 20043133]
  8. Curr Cardiol Rep. 2013 Jun;15(6):368 [PMID: 23616109]
  9. Pathol Res Pract. 2019 Mar;215(3):490-498 [PMID: 30612778]
  10. Bioinformatics. 2016 May 15;32(10):1493-501 [PMID: 26773131]
  11. Nature. 2002 May 9;417(6885):182-7 [PMID: 12000961]
  12. Int J Epidemiol. 2015 Aug;44(4):1137-47 [PMID: 24518929]
  13. Proteomics. 2010 Jul;10(13):2429-43 [PMID: 20405472]
  14. J Am Coll Cardiol. 2012 Oct 16;60(16):1503-11 [PMID: 22999729]
  15. Science. 2004 May 21;304(5674):1147-50 [PMID: 15155946]
  16. Nat Rev Genet. 2013 Jun;14(6):379-89 [PMID: 23657481]
  17. Circulation. 2007 Apr 24;115(16):2168-77 [PMID: 17420351]
  18. Biochim Biophys Acta. 1994 Jul 6;1200(2):227-34 [PMID: 8031845]
  19. Circ Genom Precis Med. 2022 Apr;15(2):e003459 [PMID: 35130028]
  20. Am J Hum Genet. 2016 Apr 7;98(4):653-66 [PMID: 27018471]
  21. Curr Opin Nephrol Hypertens. 2010 Mar;19(2):201-7 [PMID: 20040868]
  22. Arch Med Res. 2017 Apr;48(3):270-275 [PMID: 28923329]
  23. Nat Commun. 2022 Sep 16;13(1):5437 [PMID: 36114182]
  24. J Transl Med. 2009 Jun 17;7:45 [PMID: 19534815]
  25. J Epidemiol. 2017 Mar;27(3S):S2-S8 [PMID: 28189464]
  26. N Engl J Med. 2006 Mar 23;354(12):1264-72 [PMID: 16554528]
  27. Amyloid. 2005 Jun;12(2):96-102 [PMID: 16011985]
  28. Biochem Biophys Res Commun. 1999 Jan 27;254(3):522-8 [PMID: 9920772]
  29. Nature. 2020 May;581(7809):434-443 [PMID: 32461654]
  30. Cancer Res. 2007 Jul 15;67(14):6777-85 [PMID: 17638889]
  31. Neuropharmacology. 2012 Feb;62(2):890-900 [PMID: 21964436]
  32. Nat Med. 2005 May;11(5):499-506 [PMID: 15834428]
  33. PLoS Genet. 2014 Jul 31;10(7):e1004494 [PMID: 25078778]
  34. Int J Epidemiol. 2012 Oct;41(5):1265-71 [PMID: 21642350]
  35. Mol Cell Proteomics. 2007 Jun;6(6):1088-102 [PMID: 17339633]
  36. Comp Funct Genomics. 2004;5(6-7):459-70 [PMID: 18629135]
  37. PLoS Genet. 2014 May 15;10(5):e1004383 [PMID: 24830394]
  38. Curr Hypertens Rev. 2010 Nov 1;6(4):266-281 [PMID: 21423831]
  39. N Engl J Med. 2011 Dec 1;365(22):2098-109 [PMID: 22129254]
  40. Nat Genet. 2018 Sep;50(9):1335-1341 [PMID: 30104761]
  41. Cancer Res. 2008 Nov 1;68(21):8889-98 [PMID: 18974133]
  42. Curr Vasc Pharmacol. 2013 Sep;11(5):768-76 [PMID: 22272902]
  43. Front Genet. 2020 Jun 17;11:631 [PMID: 32625236]
  44. J Cell Biochem. 2009 Apr 15;106(6):957-66 [PMID: 19204935]
  45. Science. 2001 Mar 23;291(5512):2364-9 [PMID: 11269317]
  46. J Clin Invest. 2013 Mar;123(3):1176-81 [PMID: 23454767]
  47. Eur Heart J. 2021 Apr 7;42(14):1289-1367 [PMID: 32860058]
  48. Nucleic Acids Res. 2019 Jan 8;47(D1):D1005-D1012 [PMID: 30445434]
  49. Nature. 2018 Oct;562(7726):203-209 [PMID: 30305743]
  50. J Mol Biol. 2007 Aug 17;371(3):717-24 [PMID: 17583728]
  51. Oncogene. 2011 Feb 10;30(6):642-53 [PMID: 20956946]
  52. N Engl J Med. 2014 Jul 3;371(1):22-31 [PMID: 24941081]
  53. Eur J Public Health. 2015 Jun;25(3):539-46 [PMID: 25422363]
  54. Nat Rev Cardiol. 2014 Oct;11(10):563-75 [PMID: 24958078]
  55. Nat Rev Nephrol. 2011 Nov 01;8(3):141-50 [PMID: 22045239]
  56. Nat Genet. 2017 Jan;49(1):54-64 [PMID: 27841878]
  57. PLoS Genet. 2020 Jan 9;16(1):e1008538 [PMID: 31917787]
  58. Nat Genet. 2018 Oct;50(10):1412-1425 [PMID: 30224653]
  59. J Pathol. 2002 Jan;196(1):91-6 [PMID: 11748647]
  60. Nat Rev Dis Primers. 2019 Aug 16;5(1):56 [PMID: 31420554]
  61. Proteomics. 2008 Sep;8(18):3833-47 [PMID: 18780401]
  62. Biochemistry. 2000 May 23;39(20):6200-6 [PMID: 10821695]
  63. Atherosclerosis. 2019 May;284:11-17 [PMID: 30861420]
  64. Eur J Hum Genet. 2017 Jun;25(7):869-876 [PMID: 28401899]
  65. N Engl J Med. 2016 Mar 24;374(12):1123-33 [PMID: 26933753]
  66. DNA Cell Biol. 1997 Jul;16(7):861-9 [PMID: 9260929]
  67. Int J Epidemiol. 2008 Dec;37(6):1220-6 [PMID: 18263651]
  68. Cancer Sci. 2018 Nov;109(11):3393-3402 [PMID: 30156356]

MeSH Term

Animals
Antigens, Surface
Cardiovascular Diseases
Coronary Artery Disease
Genetic Loci
Genome-Wide Association Study
Humans
Mice
Milk Proteins
Polymorphism, Single Nucleotide

Chemicals

Antigens, Surface
MFGE8 protein, human
Mfge8 protein, mouse
Milk Proteins

Word Cloud

Created with Highcharts 10.0.0associationMFGE8coronarygeneticidentifiedassociationsvariantsatherosclerosisvariantdiseasesassociatedpopulationenrichedFinnishbiobankinsertionrs534125149lactadherinprotectionprotectivesplicealsolowerCardiovascularleadingcauseprematuredeathdisabilityworldwideenvironmentaldeterminantsgenome-widestudiesmultiplelocicardiovascularexactgenesdrivingremainmostlyuncoveredDueFinland'shistorymanydeleterioushigh-impactgivingpossibilityfindprotein-truncatinglikelytiegenedetectedelsewherelargestudyFinnGeninframeencodinghighlyFinlandreplicatedmeta-analysisBioBankJapanEstonianAdditionallyacceptorrs201988637independentsignificantrisk-increasingpulsepressurepointingtowardsfunctionarterialaginghumansadditionpreviousevidencemiceconclusionresultssuggestinhibitingproductionriskheartdiseasesubstantiallyInframesiteassociate

Similar Articles

Cited By