Detecting KPC-2 and NDM-1 Coexpression in Klebsiella pneumoniae Complex from Human and Animal Hosts in South America.

Felipe Vásquez-Ponce, Karine Dantas, Johana Becerra, Gregory Melocco, Fernanda Esposito, Brenda Cardoso, Larissa Rodrigues, Keila Lima, Aline V de Lima, Fábio P Sellera, Renata Mattos, Lucas Trevisoli, Marco A Vianello, Thais Sincero, Jose Di Conza, Eliana Vespero, Gabriel Gutkind, Jorge Sampaio, Nilton Lincopan
Author Information
  1. Felipe Vásquez-Ponce: Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil. ORCID
  2. Karine Dantas: Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.
  3. Johana Becerra: Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.
  4. Gregory Melocco: Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil.
  5. Fernanda Esposito: Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil.
  6. Brenda Cardoso: Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.
  7. Larissa Rodrigues: Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.
  8. Keila Lima: Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil.
  9. Aline V de Lima: Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil.
  10. Fábio P Sellera: Department of Internal Medicine, School of Veterinary Medicine and Animal Science, Universidade de São Paulo, São Paulo, Brazil.
  11. Renata Mattos: Laborclin, Pinhais, Brazil.
  12. Lucas Trevisoli: Laborclin, Pinhais, Brazil.
  13. Marco A Vianello: Natal Garrison Hospital, Brazilian Army, Natal, Brazil.
  14. Thais Sincero: Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil.
  15. Jose Di Conza: Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriologia y Virología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina.
  16. Eliana Vespero: Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, Paraná, Brazil.
  17. Gabriel Gutkind: Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriologia y Virología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina. ORCID
  18. Jorge Sampaio: Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil.
  19. Nilton Lincopan: Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil. ORCID

Abstract

Reports of Gram-negative bacteria harboring multiple carbapenemase genes have increased in South America, leading to an urgent need for appropriate microbiological diagnosis. We evaluated phenotypic methods for detecting Klebsiella pneumoniae carbapenemase 2 (KPC-2) and New Delhi metallo-β-lactamase-1 (NDM-1) coexpression in members of the K. pneumoniae complex (i.e., K. pneumoniae, K. quasipneumoniae, and K. variicola) isolated from human and animal hosts, based on inhibition of ceftazidime-avibactam (CZA) and aztreonam (ATM) by dipicolinic acid (DPA), EDTA, or avibactam (AVI). While the presence of and genes was confirmed by whole-genome sequencing, PCR, and/or GeneXpert, coexpression was successfully detected based on the following: (i) a ≥5-mm increase in the zone diameter of ATM (30 µg) disks plus AVI (4 or 20 µg) and ≥4-mm and ≥10-mm increases in the zone diameters for "CZA 50" (30 µg ceftazidime [CAZ] and 20 µg AVI) and "CZA 14" (10 µg CAZ and 4 µg AVI) disks, respectively, when we added DPA (1 mg/disk) or EDTA (5 mM) in a combined disk test (CDT); (ii) a positive ghost zone (synergism) between ATM (30 µg) and CZA 50 disks and between CZA 50 and DPA (1 mg) disks, using the double-disk synergy test (DDST) at a disk-disk distance of 2.5 cm; (iii) ≥3-fold MIC reductions of ATM and CZA in the presence of AVI (4 µg/mL), DPA (500 µg/mL), or EDTA (320 µg/mL); and (iv) immunochromatography. Although our results demonstrated that inhibition by AVI, DPA, and EDTA may provide simple and inexpensive methods for the presumptive detection of coexpression of KPC-2 and NDM-1 in members of the K. pneumoniae complex, additional studies are necessary to confirm the accuracy of these methodologies by testing other Gram-negative bacterial species and other KPC and NDM variants coexpressed by WHO critical priority pathogens detected worldwide. Alerts regarding the emergence and increase of combinations of carbapenemases in in Latin America and the Caribbean have recently been issued by PAHO and WHO, emphasizing the importance of appropriate microbiological diagnosis and the effective and articulated implementation of infection prevention and control programs. In this study, we evaluated methods based on inhibition of ceftazidime (CAZ), ceftazidime-avibactam (CZA), and aztreonam (ATM) by dipicolinic acid (DPA), EDTA, and avibactam (AVI) inhibitors for the identification of KPC-2- and NDM-1-coexpression in members of the K. pneumoniae complex recovered from human and animal hosts. Our results demonstrate that inhibition by AVI, DPA, and EDTA may provide simple and inexpensive methods for the presumptive detection of coexpression of KPC-2 and NDM-1 in members of the K. pneumoniae complex.

Keywords

References

  1. J Glob Antimicrob Resist. 2022 Jun;29:232-235 [PMID: 35430423]
  2. Ann Transl Med. 2021 May;9(9):769 [PMID: 34268382]
  3. J Med Chem. 2017 Sep 14;60(17):7267-7283 [PMID: 28809565]
  4. Antimicrob Agents Chemother. 2019 Sep 16;63(12): [PMID: 31527032]
  5. J Chemother. 2011 Oct;23(5):263-5 [PMID: 22005056]
  6. Expert Rev Anti Infect Ther. 2021 Feb;19(2):197-213 [PMID: 32813566]
  7. Medicine (Baltimore). 2020 Dec 11;99(50):e23410 [PMID: 33327265]
  8. Diagn Microbiol Infect Dis. 2011 May;70(1):119-23 [PMID: 21398074]
  9. ACS Infect Dis. 2020 May 8;6(5):1264-1272 [PMID: 32298084]
  10. Infect Drug Resist. 2022 Apr 27;15:2243-2251 [PMID: 35510161]
  11. Clin Microbiol Infect. 2019 Oct;25(10):1286.e9-1286.e15 [PMID: 30898725]
  12. J Antimicrob Chemother. 2019 Aug 1;74(8):2239-2246 [PMID: 31127297]
  13. Antimicrob Agents Chemother. 2021 Aug 17;65(9):e0089021 [PMID: 34228551]
  14. Am J Infect Control. 2020 Dec;48(12):1533-1536 [PMID: 33011336]
  15. Sci Rep. 2017 Jul 19;7(1):5917 [PMID: 28725045]
  16. Microb Drug Resist. 2015 Apr;21(2):234-6 [PMID: 25473727]
  17. BMC Microbiol. 2020 Oct 17;20(1):315 [PMID: 33069233]
  18. Clin Microbiol Infect. 2018 Feb;24(2):201.e1-201.e3 [PMID: 28827120]
  19. J Clin Microbiol. 2005 Nov;43(11):5648-52 [PMID: 16272499]
  20. Nat Commun. 2017 Dec 21;8(1):2242 [PMID: 29269938]
  21. Clin Microbiol Infect. 2014 Sep;20(9):839-53 [PMID: 24813781]
  22. Clin Infect Dis. 2020 Aug 14;71(4):1095-1098 [PMID: 31802119]
  23. Antimicrob Agents Chemother. 2015 Nov 16;60(2):752-6 [PMID: 26574008]
  24. Drugs. 2013 Feb;73(2):159-77 [PMID: 23371303]
  25. J Clin Microbiol. 2013 Sep;51(9):2986-90 [PMID: 23843486]
  26. J Chemother. 2016;28(1):1-19 [PMID: 26256147]
  27. J Med Microbiol. 2020 Jun;69(6):792-796 [PMID: 32459618]
  28. Antimicrob Agents Chemother. 2021 Oct 18;65(11):e0084621 [PMID: 34424044]
  29. J Antimicrob Chemother. 2019 Jul 1;74(7):1934-1939 [PMID: 31225611]
  30. J Glob Antimicrob Resist. 2022 Jun;29:289-292 [PMID: 35489677]
  31. J Glob Antimicrob Resist. 2022 Mar;28:49-52 [PMID: 34936924]
  32. BMC Microbiol. 2022 Jan 4;22(1):6 [PMID: 34979901]
  33. Pol J Microbiol. 2021 Sep;70(3):387-394 [PMID: 34584532]
  34. J Clin Diagn Res. 2014 Jul;8(7):DC01-3 [PMID: 25177562]
  35. J Glob Antimicrob Resist. 2022 Jun;29:558-562 [PMID: 35131508]
  36. J Infect Chemother. 2022 Feb;28(2):192-198 [PMID: 34711509]
  37. Microbiol Spectr. 2022 Feb 23;10(1):e0108021 [PMID: 35107384]
  38. Eur J Clin Microbiol Infect Dis. 2017 Nov;36(11):2127-2135 [PMID: 28639165]
  39. Antibiotics (Basel). 2021 Nov 03;10(11): [PMID: 34827279]
  40. Antimicrob Agents Chemother. 2020 Nov 17;64(12): [PMID: 32988825]
  41. Infection. 2019 Aug;47(4):673-675 [PMID: 31144273]
  42. Antimicrob Agents Chemother. 2017 Aug 24;61(9): [PMID: 28630191]
  43. Int J Mol Sci. 2020 Dec 06;21(23): [PMID: 33291334]
  44. J Glob Antimicrob Resist. 2020 Sep;22:448-451 [PMID: 32387260]
  45. Mikrobiyol Bul. 2022 Apr;56(2):230-250 [PMID: 35477227]
  46. J Antimicrob Chemother. 2020 Nov 1;75(11):3386-3390 [PMID: 32766706]
  47. Antibiotics (Basel). 2022 Mar 10;11(3): [PMID: 35326836]
  48. Int J Antimicrob Agents. 2010 Sep;36(3):205-10 [PMID: 20598859]
  49. Front Microbiol. 2022 Apr 29;13:868705 [PMID: 35572689]
  50. Ann Clin Microbiol Antimicrob. 2021 Aug 30;20(1):57 [PMID: 34461917]
  51. Antibiotics (Basel). 2021 Aug 20;10(8): [PMID: 34439062]

MeSH Term

Animals
Humans
Ceftazidime
Klebsiella pneumoniae
Aztreonam
Klebsiella Infections
Klebsiella
Edetic Acid
Microbial Sensitivity Tests
Anti-Bacterial Agents
beta-Lactamases
Bacterial Proteins

Chemicals

Ceftazidime
avibactam
beta-lactamase NDM-1
Aztreonam
Edetic Acid
Anti-Bacterial Agents
beta-Lactamases
Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0KAVIpneumoniaeDPAEDTACZAATMmethodsKPC-2NDM-1coexpressionmemberscomplexinhibitiontestAmericabasedaztreonamavibactamzone30 µgdisksdiskGram-negativecarbapenemasegenesSouthappropriatemicrobiologicaldiagnosisevaluatedKlebsiella2quasipneumoniaevariicolahumananimalhostsceftazidime-avibactamdipicolinicacidpresencedetectedincrease20 µg"CZAceftazidimeCAZcombinedimmunochromatographyresultsmayprovidesimpleinexpensivepresumptivedetectionWHOcarbapenemasesReportsbacteriaharboringmultipleincreasedleadingurgentneedphenotypicdetectingNewDelhimetallo-β-lactamase-1ieisolatedconfirmedwhole-genomesequencingPCRand/orGeneXpertsuccessfullyfollowing:a ≥5-mmdiameterplus4and ≥4-mmand ≥10-mmincreasesdiameters50"[CAZ]14"10µg4 µgrespectivelyadded1 mg/disk5 mMCDTiipositiveghostsynergism50 disks501 mgusingdouble-disksynergyDDSTdisk-diskdistance5 cmiii≥3-foldMICreductions4 µg/mL500 µg/mL320 µg/mLivAlthoughdemonstratedadditionalstudiesnecessaryconfirmaccuracymethodologiestestingbacterialspeciesKPCNDMvariantscoexpressedcriticalprioritypathogensworldwideAlertsregardingemergencecombinationsLatinCaribbeanrecentlyissuedPAHOemphasizingimportanceeffectivearticulatedimplementationinfectionpreventioncontrolprogramsstudyinhibitorsidentificationKPC-2-NDM-1-coexpressionrecovereddemonstrateDetectingCoexpressionComplexHumanAnimalHostscoproductionapproximation

Similar Articles

Cited By