Assessment of Parent Income and Education, Neighborhood Disadvantage, and Child Brain Structure.

Divyangana Rakesh, Andrew Zalesky, Sarah Whittle
Author Information
  1. Divyangana Rakesh: Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne Health, Melbourne, Victoria, Australia.
  2. Andrew Zalesky: Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne Health, Melbourne, Victoria, Australia.
  3. Sarah Whittle: Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne Health, Melbourne, Victoria, Australia.

Abstract

Importance: Although different aspects of socioeconomic status (SES) may represent distinct risk factors for poor mental health in children, knowledge of their differential and synergistic associations with the brain is limited.
Objective: To examine the independent associations between distinct SES factors and child brain structure.
Design, Setting, and Participants: We used baseline data from participants aged 9 to 10 years in the Adolescent Brain Cognitive Development (ABCD) study. These data were collected from 21 US sites between September 2017 and August 2018. Study participants were recruited from schools to create a participant sample that closely reflects the US population.
Exposures: Neighborhood disadvantage was measured using the area deprivation index. We also used data on total parent or caregiver educational attainment (in years) and household income-to-needs ratio.
Main Outcomes and Measures: T1-weighted magnetic resonance imaging was used to assess measures of cortical thickness, surface area, and subcortical volume.
Results: Data from 8862 ABCD participants aged 9 to 10 years were analyzed. The mean (SD) age was 119.1 (7.5) months; there were 4243 girls (47.9%) and 4619 boys (52.1%). Data on race or ethnicity were available for 8857 of 8862 participants: 173 (2.0%) were Asian, 1099 (12.4%) were Black or African American, 1688 (19.1%) were Hispanic, 4967 (56.1%) were White, and 930 (10.5%) reported multiple races or ethnicities. Using 10-fold, within-sample split-half replication, we found that neighborhood disadvantage was associated with lower cortical thickness in the following brain regions (η2 = 0.004-0.009): cuneus (B [SE] = -0.099 [0.013]; P < .001), lateral occipital (B [SE] = -0.088 [0.011]; P < .001), lateral orbitofrontal (B [SE] = -0.072 [0.012]; P < .001), lingual (B [SE] = -0.104 [0.012]; P < .001), paracentral (B [SE] = -0.086 [0.012]; P < .001), pericalcarine (B [SE] = -0.077 [0.012]; P < .001), postcentral (B [SE] = -0.069 [0.012]; P < .001), precentral (B [SE] = -0.059 [0.011]; P < .001), rostral middle frontal (B [SE] = -0.076 [0.011]; P < .001), and superior parietal (B [SE] = -0.060 [0.011]; P < .001). Exploratory analyses showed that the associations of low educational attainment or neighborhood disadvantage and low cortical thickness were attenuated in the presence of a high income-to-needs ratio (η2 = 0.003-0.007).
Conclusions and Relevance: The findings of this cross-sectional study suggest that different SES indicators have distinct associations with children's brain structure. A high income-to-needs ratio may play a protective role in the context of neighborhood disadvantage and low parent or caregiver educational attainment. This study highlights the importance of considering the joint associations of different SES indicators in future work.

References

  1. Dev Sci. 2017 Sep;20(5): [PMID: 27434857]
  2. Soc Sci Med. 2011 Oct;73(7):1088-96 [PMID: 21820781]
  3. Neuroimage. 2019 Nov 15;202:116091 [PMID: 31415884]
  4. Nat Neurosci. 2015 May;18(5):773-8 [PMID: 25821911]
  5. JAMA Psychiatry. 2017 Aug 1;74(8):824-832 [PMID: 28636697]
  6. Dev Cogn Neurosci. 2021 Oct;51:101005 [PMID: 34419766]
  7. Neuropsychopharmacology. 2016 Jan;41(1):3-23 [PMID: 26076834]
  8. Dev Cogn Neurosci. 2020 Aug;44:100796 [PMID: 32479375]
  9. JAMA Pediatr. 2017 Jan 1;171(1):53-60 [PMID: 27842189]
  10. JAMA Psychiatry. 2019 Sep 1;76(9):966-975 [PMID: 31141099]
  11. Am Psychol. 2020 Dec;75(9):1245-1259 [PMID: 33382290]
  12. Dev Cogn Neurosci. 2018 Apr;30:212-222 [PMID: 29597156]
  13. Dev Cogn Neurosci. 2022 Jun;55:101115 [PMID: 35636343]
  14. Neurosci Biobehav Rev. 2021 Nov;130:379-407 [PMID: 34474050]
  15. Cereb Cortex. 2020 Jan 10;30(1):1-19 [PMID: 31220218]
  16. Cereb Cortex. 2009 Nov;19(11):2728-35 [PMID: 19299253]
  17. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022 Jan;7(1):34-44 [PMID: 34273554]
  18. JAMA Netw Open. 2020 Nov 2;3(11):e2023774 [PMID: 33141160]
  19. Trends Cogn Sci. 2009 Feb;13(2):65-73 [PMID: 19135405]
  20. Dev Psychobiol. 2021 Mar;63(2):364-377 [PMID: 32754912]
  21. Biol Psychol. 2020 Sep;155:107946 [PMID: 32805299]
  22. JAMA Pediatr. 2021 Aug 1;175(8):e210426 [PMID: 33938908]
  23. Dev Cogn Neurosci. 2018 Aug;32:43-54 [PMID: 29567376]
  24. Biol Psychiatry. 2015 Feb 15;77(4):314-23 [PMID: 24993057]
  25. Innov Clin Neurosci. 2013 Apr;10(4):10-9 [PMID: 23696954]
  26. Transl Psychiatry. 2022 Jan 24;12(1):33 [PMID: 35075111]
  27. Soc Sci Res. 2011 Sep;40(5):1434-1444 [PMID: 25125713]
  28. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8174-9 [PMID: 15148381]
  29. Brain Res. 2006 Sep 19;1110(1):166-74 [PMID: 16879809]
  30. Cereb Cortex. 2018 Jul 1;28(7):2297-2312 [PMID: 28591795]
  31. Dev Sci. 2013 Sep;16(5):641-52 [PMID: 24033570]
  32. Infant Behav Dev. 2012 Feb;35(1):48-59 [PMID: 22018719]
  33. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021 Sep;6(9):877-886 [PMID: 33771727]
  34. Wiley Interdiscip Rev Cogn Sci. 2012 May;3(3):377-386 [PMID: 26301469]
  35. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022 Feb 2;: [PMID: 35123109]
  36. Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12419-12427 [PMID: 32409600]
  37. Nat Rev Neurosci. 2010 Sep;11(9):651-9 [PMID: 20725096]
  38. Neuroimage. 2018 Jun;173:298-310 [PMID: 29486324]
  39. Soc Sci Med. 2003 Feb;56(4):769-84 [PMID: 12560010]
  40. Ann Intern Med. 2014 Dec 2;161(11):765-74 [PMID: 25437404]
  41. Nat Rev Neurosci. 2009 Jun;10(6):434-45 [PMID: 19401723]
  42. Child Dev. 1995 Apr;66(2):360-75 [PMID: 7750371]
  43. Cereb Cortex. 2022 May 14;32(10):2156-2169 [PMID: 34607342]
  44. Dev Cogn Neurosci. 2021 Dec;52:101025 [PMID: 34700196]
  45. Magn Reson Med. 2010 Jan;63(1):91-105 [PMID: 20027635]
  46. Dev Sci. 2021 Jan;24(1):e12985 [PMID: 32416027]
  47. JAMA Pediatr. 2013 Dec;167(12):1135-42 [PMID: 24165922]
  48. Dev Cogn Neurosci. 2018 Aug;32:16-22 [PMID: 29703560]
  49. BMC Public Health. 2011 Apr 12;11:225 [PMID: 21486447]
  50. Dev Sci. 2007 Jul;10(4):464-80 [PMID: 17552936]
  51. Dev Cogn Neurosci. 2021 Oct;51:101002 [PMID: 34411954]
  52. JAMA Pediatr. 2022 Jan 1;176(1):13-15 [PMID: 34633431]
  53. BMC Public Health. 2011 Jan 17;11:42 [PMID: 21241479]
  54. Neuroimage. 2014 Feb 15;87:120-6 [PMID: 24246495]
  55. Environ Res. 2012 Aug;117:54-9 [PMID: 22608140]
  56. Psychol Bull. 2000 Mar;126(2):309-37 [PMID: 10748645]
  57. Dev Cogn Neurosci. 2019 Oct;39:100699 [PMID: 31446376]
  58. Am J Public Health. 2003 Jul;93(7):1137-43 [PMID: 12835199]
  59. Psychol Sci. 2015 Jun;26(6):925-33 [PMID: 25896418]
  60. Am J Epidemiol. 2006 Jun 15;163(12):1071-8 [PMID: 16707655]
  61. Front Hum Neurosci. 2012 Oct 12;6:277 [PMID: 23091454]
  62. Am Psychol. 2004 Feb-Mar;59(2):77-92 [PMID: 14992634]
  63. Demography. 2010 Aug;47(3):777-800 [PMID: 20879688]
  64. Nat Rev Neurosci. 2018 Jul;19(7):428-438 [PMID: 29867123]
  65. Dev Cogn Neurosci. 2022 Feb;53:101043 [PMID: 34915436]
  66. Neuroimage. 2016 Apr 1;129:175-184 [PMID: 26825441]
  67. Magn Reson Med. 2012 Aug;68(2):389-99 [PMID: 22213578]
  68. PLoS One. 2011 May 04;6(5):e18712 [PMID: 21573231]

MeSH Term

Adolescent
Brain
Child
Cross-Sectional Studies
Female
Humans
Income
Male
Neighborhood Characteristics
Parents

Word Cloud

Created with Highcharts 10.0.0[0P <001B [SE]= -0associations012]SESbraindisadvantageB[SE] = -0011]differentdistinctuseddataparticipants10yearsstudyeducationalattainmentincome-to-needsratiocorticalthickness1%neighborhoodlowmayfactorsstructureaged9BrainABCDUSNeighborhoodareaparentcaregiverData8862η2 = 0lateralhighindicatorsImportance:AlthoughaspectssocioeconomicstatusrepresentriskpoormentalhealthchildrenknowledgedifferentialsynergisticlimitedObjective:examineindependentchildDesignSettingParticipants:baselineAdolescentCognitiveDevelopmentcollected21sitesSeptember2017August2018StudyrecruitedschoolscreateparticipantsamplecloselyreflectspopulationExposures:measuredusingdeprivationindexalsototalhouseholdMainOutcomesMeasures:T1-weightedmagneticresonanceimagingassessmeasuressurfacesubcorticalvolumeResults:analyzedmeanSDage1191 75months4243girls479%4619boys52raceethnicityavailable8857participants:17320%Asian1099124%BlackAfricanAmerican168819Hispanic496756White9305%reportedmultipleracesethnicitiesUsing10-foldwithin-samplesplit-halfreplicationfoundassociatedlowerfollowingregions004-0009:cuneus099013]occipital088orbitofrontal072lingual104paracentral086pericalcarine077postcentral069precentral059rostralmiddlefrontal076superiorparietal060Exploratoryanalysesshowedattenuatedpresence003-0007ConclusionsRelevance:findingscross-sectionalsuggestchildren'splayprotectiverolecontexthighlightsimportanceconsideringjointfutureworkAssessmentParentIncomeEducationDisadvantageChildStructure

Similar Articles

Cited By